12 research outputs found

    Regenerative Electronic Biosensors Using Supramolecular Approaches

    No full text
    A supramolecular interface for Si nanowire FETs has been developed with the aim of creating regenerative electronic biosensors. The key to the approach is Si-NWs functionalized with β-cyclodextrin (β-CD), to which receptor moieties can be attached with an orthogonal supramolecular linker. Here we demonstrate full recycling using the strongest biomolecular system known, streptavidin (SAv)–biotin. The bound SAv and the linkers can be selectively removed from the surface through competitive desorption with concentrated β-CD, regenerating the sensor for repeated use. An added advantage of β-CD is the possibility of stereoselective sensors, and we demonstrate here the ability to quantify the enantiomeric composition of chiral targets

    Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors

    No full text
    For point-of-care applications, integrating sensors into a microfluidic chip is a nontrivial task because conventional detection modules are bulky and microfluidic chips are small in size and their fabrication processes are not compatible. In this work, a solid-state microfluidic chip with on-chip acoustic sensors using standard thin-film technologies is introduced. The integrated chip is essentially a stack of thin films on silicon substrate, featuring compact size, electrical input (fluid control), and electrical output (sensor read-out). These features all contribute to portability. In addition, by virtue of processing discrete microdroplets, the chip provides a solution to the performance degradation bottleneck of acoustic sensors in liquid-phase sensing. Label-free immunoassays in serum are carried out, and the viability of the chip is further demonstrated by result comparison with commercial ELISA in prostate-specific antigen sensing experiments. The solid-state chip is believed to fit specific applications in personalized diagnostics and other relevant clinical settings where instrument portability matters

    Biofouling Removal and Protein Detection Using a Hypersonic Resonator

    No full text
    Nonspecific binding (NSB) is a general issue for surface based biosensors. Various approaches have been developed to prevent or remove the NSBs. However, these approaches either increased the background signals of the sensors or limited to specific transducers interface. In this work, we developed a hydrodynamic approach to selectively remove the NSBs using a microfabricated hypersonic resonator with 2.5 gigahertz (GHz) resonant frequency. The high frequency device facilitates generation of multiple controlled microvortexes which then create cleaning forces at the solid–liquid interfaces. The competitive adhesive and cleaning forces have been investigated using the finite element method (FEM) simulation, identifying the feasibility of the vortex-induced NSB removal. NSB proteins have been selectively removed experimentally both on the surface of the resonator and on other substrates which contact the vortexes. Thus, the developed hydrodynamic approach is believed to be a simple and versatile tool for NSB removal and compatible to many sensor systems. The unique feature of the hypersonic resonator is that it can be used as a gravimetric sensor as well; thus a combined NSB removal and protein detection dual functional biosensor system is developed

    Smartphone-Enabled Colorimetric Trinitrotoluene Detection Using Amine-Trapped Polydimethylsiloxane Membranes

    No full text
    A smartphone-enabled platform for easy and portably colorimetric analysis of 2,4,6-trinitro­toluene (TNT) using amine-trapped PDMS is designed and implemented. The amine-trapped polydimethyl­siloxane (PDMS) is simply prepared by immersing the cured PDMS in aminosilane solutions forming an amine-containing polymer. After contacting with TNT-containing solutions, the colorless PDMS showed a rapid colorimetric change which can be easily identified by the naked eye. The amine-trapped PDMS was carefully optimized to achieve visible detection of TNT at concentrations as low as 1 μM. Using an integrated camera in the smartphone, pictures of colored PDMS membranes can be analyzed by a home-developed mobile application. Thus, the TNT amount can be precisely quantified. Direct TNT detection in real samples (e.g., drinking, tap, and lake waters) is demonstrated as well. The smartphone-enabled colorimetric method using amine-trapped PDMS membranes realizes a convenient and efficient approach toward a portable system for field TNT detections

    Cellphone-Enabled Microwell-Based Microbead Aggregation Assay for Portable Biomarker Detection

    No full text
    Quantitative biomarker detection methods featured with rapidity, high accuracy, and label-free are demonstrated for the development of point-of-care (POC) technologies or “beside” diagnostics. Microbead aggregation via protein-specific linkage provides an effective approach for selective capture of biomarkers from the samples, and can directly readout the presence and amount of the targets. However, sensors or microfluidic analyzers that can accurately quantify the microbead aggregation are scared. In this work, we demonstrate a microwell-based microbeads analyzing system, by which online manipulations of microbeads including trapping, arraying, and rotations can be realized, providing a series of microfluidic approaches to layout the aggregated microbeads for further convenient characterizations. Prostate specific antigen is detected using the proposed system, demonstrating the limit of detection as low as 0.125 ng/mL (3.67 pM). A two-step reaction kinetics model is proposed for the first time to explain the dynamic process of microbeads aggregation. The developed microbeads aggregation analysis system has the advantages of label-free detection, high throughput, and low cost, showing great potential for portable biomarker detection

    Detection of Volatile Organic Compounds Using Microfabricated Resonator Array Functionalized with Supramolecular Monolayers

    Get PDF
    This paper describes the detection of volatile organic compounds (VOCs) using an e-nose type integrated microfabricated sensor array, in which each resonator is coated with different supramolecular monolayers: <i>p</i>-<i>tert</i>-butyl calix[8]­arene (Calix[8]­arene), 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine (Porphyrin), β-cyclodextrin (β-CD), and cucurbit[8]­uril (CB[8]). Supramolecular monolayers fabricated by Langmuir–Blodgett techniques work as specific sensing interface for different VOCs recognition which increase the sensor selectivity. Microfabricated ultrahigh working frequency film bulk acoustic resonator (FBAR) transducers (4.4 GHz) enable their high sensitivity toward monolayer gas sensing which facilitate the analyses of VOCs adsorption isotherms and kinetics. Two affinity constants (<i>K</i><sub>1</sub>, <i>K</i><sub>2</sub>) are obtained for each VOC, which indicate the gas molecule adsorption happen inside and outside of the supramolecular cavities. Additional kinetic information on adsorption and desorption rate constants (<i>k</i><sub>a</sub>, <i>k</i><sub>d</sub>) are obtained as well from exponential fitting results. The five parameters, one from the conventional frequency shift signals of mass transducers and the other four from the indirect analyses of monolayer adsorption behaviors, thus enrich the sensing matrix (Δ<i>f</i>, <i>K</i><sub>1</sub>, <i>K</i><sub>2</sub>, <i>k</i><sub>a</sub>, <i>k</i><sub>d</sub>) which can be used as multiparameter fingerprint patterns for highly selective detection and discrimination of VOCs

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics
    corecore