1,625 research outputs found

    A dynamic prediction model for intraoperative somatosensory evoked potential monitoring

    Get PDF
    This study proposed a support vector regression model applied in prediction of intraoperative somatosensory evoked potential changes associated with physiological and anesthetic changes. This model was developed from probability distribution and support vector machines. The predicted results showed that observed and predicted SEP has similar variation trend with different values, with acceptable errors. With this prediction model, changes of SEP in correlation with non-surgical factors were estimated. Not only the prediction accuracy of SEP has been improved, but also provides the reliability of the classification. It will be helpful to develop an intelligent monitor model based expert system that can make a reliable decision for the potential spinal injury.published_or_final_versio

    A Simple Method to Synthesize Cadmium Hydroxide Nanobelts

    Get PDF
    Cd(OH)2nanobelts have been synthesized in high yield by a convenient polyol method for the first time. XRD, XPS, FESEM, and TEM were used to characterize the product, which revealed that the product consisted of belt-like crystals about 40 nm in thickness and length up to several hundreds of micrometers. Studies found that the viscosity of the solvent has important influence on the morphology of the final products. The optical absorption spectrum indicates that the Cd(OH)2nanobelts have a direct band gap of 4.45 eV

    Compensation defects in annealed undoped liquid encapsulated Czochralski InP

    Get PDF
    As-grown undoped n-type semiconducting and annealed undoped semi-insulating (SI) liquid encapsulated Czochralski (LEC) InP has been studied by temperature dependent Hall measurement, photoluminescence spectroscopy, infrared absorption, and photocurrent spectroscopy. P-type conduction SI InP can frequently be obtained by annealing undoped LEC InP. This is caused by a high concentration of thermally induced native acceptor defects. In some cases, it can be shown that the thermally induced n-type SI property of undoped LEC InP is caused by a midgap donor compensating for the net shallow acceptors. The midgap donor is proposed to be a phosphorus antisite related defect. Traps in annealed SI InP have been detected by photocurrent spectroscopy and have been compared with reported results. The mechanisms of defect formation are discussed. © 1999 American Institute of Physics.published_or_final_versio

    Quantifying Inactive Lithium in Lithium Metal Batteries

    Get PDF
    Inactive lithium (Li) formation is the immediate cause of capacity loss and catastrophic failure of Li metal batteries. However, the chemical component and the atomic level structure of inactive Li have rarely been studied due to the lack of effective diagnosis tools to accurately differentiate and quantify Li+ in solid electrolyte interphase (SEI) components and the electrically isolated unreacted metallic Li0, which together comprise the inactive Li. Here, by introducing a new analytical method, Titration Gas Chromatography (TGC), we can accurately quantify the contribution from metallic Li0 to the total amount of inactive Li. We uncover that the Li0, rather than the electrochemically formed SEI, dominates the inactive Li and capacity loss. Using cryogenic electron microscopies to further study the microstructure and nanostructure of inactive Li, we find that the Li0 is surrounded by insulating SEI, losing the electronic conductive pathway to the bulk electrode. Coupling the measurements of the Li0 global content to observations of its local atomic structure, we reveal the formation mechanism of inactive Li in different types of electrolytes, and identify the true underlying cause of low Coulombic efficiency in Li metal deposition and stripping. We ultimately propose strategies to enable the highly efficient Li deposition and stripping to enable Li metal anode for next generation high energy batteries

    Shared-network scheme of SMV and GOOSE in smart substation

    Get PDF

    Strain induced exciton fine-structure splitting and shift in bent ZnO microwires

    Get PDF
    Lattice strain is a useful and economic way to tune the device performance and is commonly present in nanostructures. Here, we investigated for the first time the exciton spectra evolution in bent ZnO microwires along the radial direction via high spatial/energy resolution cathodeluminescence spectroscopy at 5.5 K. Our experiments show that the exciton peak splits into multi fine peaks towards the compressive part while retains one peak in the tensile part and the emission peak displays a continuous blue-shift from tensile to compressive edges. In combination with first-principles calculations, we show that the observed NBE emission splitting is due to the valence band splitting and the absence of peak splitting in the tensile part maybe due to the highly localized holes in the A band and the carrier density distribution across the microwire. Our studies may pave the way to design nanophotonic and electronic devices using bent ZnO nanowires

    Formation of P In defect in annealed liquid-encapsulated Czochralski InP

    Get PDF
    Fourier transform infrared spectroscopy measurements have been carried out on liquid-encapsulated Czochralski-grown undoped InP wafers, which reproducibly become semi-insulating upon annealing in an ambient of phosphorus at 800-900°C. The measurements reveal a high concentration of hydrogen complexes in the form V InH 4 existing in the material before annealing in agreement with recent experimental studies. It is argued that the dominant and essential process producing the semi-insulating behavior is the compensation produced by an EL 2-like deep donor phosphorus antisite defect, which is formed by the dissociation of the hydrogen complexes during the process of annealing. The deep donor compensates acceptors, the majority of which are shallow residual acceptor impurities and deep hydrogen associated V In and isolated V In levels, produced at the first stage of the dissociation of the V InH 4 complex. The high concentration of indium vacancies produced by the dissociation are the precursor of the EL 2-like phosphorus antisite. These results show the importance of hydrogen on the electrical properties of InP and indicate that this largely results from low formation energy of the complex V InH 4 in comparison with that of an isolated V In. © 1998 American Institute of Physics.published_or_final_versio
    • …
    corecore