39 research outputs found

    Genetic characterization of the Ma locus with pH and titratable acidity in apple

    Get PDF
    Apple fruit flavor is greatly affected by the level of malic acid, which is the major organic acid in mature apple fruit. To understand the genetic and molecular basis of apple fruit acidity, fruit juice pH and/or titratable acidity (TA) were measured in two half-sib populations GMAL 4595 [Royal Gala×PI (Plant Introduction) 613988] and GMAL 4590 (Royal Gala×PI 613971) of 438 trees in total. The maternal parent Royal Gala is a commercial variety and the paternal parents are two M. sieversii (the progenitor species of domestic apple) elite accessions. The low-acid trait segregates recessively and the overall acidity variations in the two populations were primarily controlled by the Ma (malic acid) locus, a major gene discovered in the 1950s (Nybom in Hereditas 45:332-350, 1959) and later mapped to linkage group 16 (Maliepaard et al. in Theor Appl Genet 97:60-73, 1998). The allele Ma has a strong additive effect in increasing fruit acidity and is incompletely dominant over ma. QTL (quantitative trait locus) analyses in GMAL 4595 mapped the major QTL Ma in both Royal Gala and PI 613988, the effects of which explained 17.0-42.3% of the variation in fruit pH and TA. In addition, two minor QTL, tentatively designated M2 and M3, were also detected for fruit acidity, with M2 on linkage group 6 of Royal Gala and M3 on linkage group 1 of PI 613988. By exploring the genome sequences of apple, eight new simple sequence repeat markers tightly linked to Ma were developed, leading to construction of a fine genetic map of the Ma locus that defines it to a physical region no larger than 150kb in the Golden Delicious genom

    Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    Get PDF
    An apple loss-of-colour fruit somatic mutation is likely the consequence of collective repression of a co-expression gene network module highly associated with anthocyanin and methylation in the promoter of MdMYB1

    A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple

    Get PDF
    Acidity levels greatly affect the taste and flavor of fruit, and consequently its market value. In mature apple fruit, malic acid is the predominant organic acid. Several studies have confirmed that the major quantitative trait locus Ma largely controls the variation of fruit acidity levels. The Ma locus has recently been defined in a region of 150kb that contains 44 predicted genes on chromosome 16 in the Golden Delicious genome. In this study, we identified two aluminum-activated malate transporter-like genes, designated Ma1 and Ma2, as strong candidates of Ma by narrowing down the Ma locus to 65-82kb containing 12-19 predicted genes depending on the haplotypes. The Ma haplotypes were determined by sequencing two bacterial artificial chromosome clones from G.41 (an apple rootstock of genotype Mama) that cover the two distinct haplotypes at the Ma locus. Gene expression profiling in 18 apple germplasm accessions suggested that Ma1 is the major determinant at the Ma locus controlling fruit acidity as Ma1 is expressed at a much higher level than Ma2 and the Ma1 expression is significantly correlated with fruit titratable acidity (R 2=0.4543, P=0.0021). In the coding sequences of low acidity alleles of Ma1 and Ma2, sequence variations at the amino acid level between Golden Delicious and G.41 were not detected. But the alleles for high acidity vary considerably between the two genotypes. The low acidity allele of Ma1, Ma1-1455A, is mainly characterized by a mutation at base 1455 in the open reading frame. The mutation leads to a premature stop codon that truncates the carboxyl terminus of Ma1-1455A by 84 amino acids compared with Ma1-1455G. A survey of 29 apple germplasm accessions using marker CAPS1455 that targets the SNP1455 in Ma1 showed that the CAPS1455A allele was associated completely with high pH and highly with low titratable acidity, suggesting that the natural mutation-led truncation is most likely responsible for the abolished function of Ma for low pH or high acidity in appl

    Fine genetic mapping of the Co locus controlling columnar growth habit in apple

    Get PDF
    Tree architecture is an important, complex and dynamic trait affected by diverse genetic, ontogenetic and environmental factors. ‘Wijcik McIntosh', a columnar (reduced branching) sport of ‘McIntosh' and a valuable genetic resource, has been used intensively in apple-breeding programs for genetic improvement of tree architecture. The columnar growth habit is primarily controlled by the dominant allele of gene Co (columnar) on linkage group-10. But the Co locus is not well mapped and the Co gene remains unknown. To precisely map the Co locus and to identify candidate genes of Co, a sequence-based approach using both peach and apple genomes was used to develop new markers linked more tightly to Co. Five new simple sequence repeats markers were developed (C1753-3520, C18470-25831, C6536-31519, C7223-38004 and C7629-22009). The first four markers were obtained from apple genomic sequences on chromosome-10, whereas the last (C7629-22009) was from an unanchored apple contig that contains an apple expressed sequence tag CV082943, which was identified through synteny analysis between the peach and apple genomes. Genetic mapping of these five markers in four F1 populations of 528 genotypes and 290 diverse columnar selections/cultivars (818 genotypes in total) delimited the Co locus in a genetic interval with 0.37% recombination between markers C1753-3520 and C7629-22009. Marker C18470-25831 co-segregates with Co in the 818 genotypes studied. The Co region is estimated to be 193kb and contains 26 predicted gene in the ‘Golden Delicious' genome. Among the 26 genes, three are putative LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) containing transcription factor genes known of essential roles in plant lateral organ development, and are therefore considered as strong candidates of Co, designated MdLBD1, MdLBD2, and MdLBD3. Although more comprehensive studies are required to confirm the function of MdLBD1-3, the present work represents an important step forward to better understand the genetic and molecular control of tree architecture in appl

    Towards an improved apple reference transcriptome using RNA-seq

    Get PDF
    The reference genome of apple (Malus×domestica) has been available since 2010. Despite being a milestone in apple genomics, the reference genome is difficult to be used as a reference in RNA-seq (RNA sequencing) analysis, a widespread technology in transcriptomic studies. One of the major limitations appears to be the low coverage of the reference transcriptome in RNA-seq mapping of reads. To improve the reference transcriptome, we obtained 14 sets of strand-specific RNA-seq data of 168.5 million reads in total from fruit of Golden Delicious (GD, the source of the reference genome) in varying growth and developmental stages. Using a combination of genome-guided assembly and de novo assembly, the apple reference transcriptome was improved to a collection of 71,178 genes or transcripts, which includes 53,654 genes predicted originally (with MDP prefixed in their IDs) and 17,524 novel transcripts. Of these novel transcripts, 8,144 were identified from reads directly mapped to the reference genome while the remaining 9,380 were extracted from de novo assemblies of reads that could not be initially mapped to the reference genome. Evaluating the improved apple reference transcriptome with reads from Golden Delicious and other genotypes used in this and other studies showed that it allowed 62.5±9.3-82.3±2.7% of reads to be mapped, a marked increase from the low rates of 37.4±7.7-46.6±7.1% offered by the original reference transcriptome. The improved reference transcriptome therefore represents a step forward towards a complete reference transcriptome in apple

    EST contig-based SSR linkage maps for Malus × domestica cv Royal Gala and an apple scab resistant accession of M. sieversii , the progenitor species of domestic apple

    Get PDF
    Malus sieversii is a progenitor species of domestic apple M.×domestica. Using population "GMAL 4595” of 188 individuals derived from a cross of Royal Gala×PI 613988 (apple scab resistant, M. sieversii), 287 SSR (simple sequence repeats) loci were mapped. Of these SSRs, 80 are published anchors and 207 are newly developed EST (expressed sequence tag) contig-based SSRs, representing 1,630 Malus EST accessions in GenBank. Putative gene functions of these EST contigs are diverse, including regulating plant growth, development and response to environmental stresses. Among the 80 published SSRs, 18 are PI 613988 specific, 38 are common and 24 are Royal Gala specific. Out of the 207 newly developed EST contig-based SSRs, 79 are PI 613988 specific, 45 are common and 83 are Royal Gala specific. These results led to the construction of a M. sieversii map (1,387.0cM) of 180 SSR markers and a Royal Gala map (1,283.4cM) of 190 SSR markers. Mapping of scab resistance was independently conducted in two subsets of population "GMAL 4595” that were inoculated with Ventura inaequalis races (1) and (2), respectively. In combination with the two major resistance reactions Chl (chlorotic lesions) and SN (stellate necrosis) to each race, four subsets of resistance data, i.e., Chl/race (1), SN/race (1), Chl/race (2) and SN/race (2), were constituted and analyzed, leading to four resistance loci mapped to the linkage group 2 of PI 613988; SNR1 (stellate necrosis resistance to race (1)) and SNR2 are tightly linked in a region of known scab resistance genes, and ChlR1 (Chlorotic lesion resistance to race (1)) and ChlR2 are also linked tightly but in a region without known scab resistance genes. The utility of the two linkage maps, the new EST contig-based markers and M. sieversii as sources of apple scab resistance are discusse

    A new implementation of high-throughput five-dimensional clone pooling strategy for BAC library screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A five-dimensional (5-D) clone pooling strategy for screening of bacterial artificial chromosome (BAC) clones with molecular markers utilizing highly-parallel Illumina GoldenGate assays and PCR facilitates high-throughput BAC clone and BAC contig anchoring on a genetic map. However, this strategy occasionally needs manual PCR to deconvolute pools and identify truly positive clones.</p> <p>Results</p> <p>A new implementation is reported here for our previously reported clone pooling strategy. Row and column pools of BAC clones are divided into sub-pools with 1~2× genome coverage. All BAC pools are screened with Illumina's GoldenGate assay and the BAC pools are deconvoluted to identify individual positive clones. Putative positive BAC clones are then further analyzed to find positive clones on the basis of them being neighbours in a contig. An exhaustive search or brute force algorithm was designed for this deconvolution and integrated into a newly developed software tool, FPCBrowser, for analyzing clone pooling data. This algorithm was used with empirical data for 55 Illumina GoldenGate SNP assays detecting SNP markers mapped on <it>Aegilops tauschii </it>chromosome 2D and <it>Ae. tauschii </it>contig maps. Clones in single contigs were successfully assigned to 48 (87%) specific SNP markers on the map with 91% precision.</p> <p>Conclusion</p> <p>A new implementation of 5-D BAC clone pooling strategy employing both GoldenGate assay screening and assembled BAC contigs is shown here to be a high-throughput, low cost, rapid, and feasible approach to screening BAC libraries and anchoring BAC clones and contigs on genetic maps. The software FPCBrowser with the integrated clone deconvolution algorithm has been developed and is downloadable at <url>http://avena.pw.usda.gov/wheatD/fpcbrowser.shtml</url>.</p

    A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current techniques of screening bacterial artificial chromosome (BAC) libraries for molecular markers during the construction of physical maps are slow, laborious and often assign multiple BAC contigs to a single locus on a genetic map. These limitations are the principal impediment in the construction of physical maps of large eukaryotic genomes. It is hypothesized that this impediment can be overcome by screening multidimensional pools of BAC clones using the highly parallel Illumina GoldenGate™ assay.</p> <p>Results</p> <p>To test the efficacy of the Golden Gate assay in BAC library screening, multidimensional pools involving 302976 <it>Aegilops tauschii </it>BAC clones were genotyped for the presence/absence of specific gene sequences with multiplexed Illumina GoldenGate oligonucleotide assays previously used to place single nucleotide polymorphisms on an <it>Ae. tauschii </it>genetic map. Of 1384 allele-informative oligonucleotide assays, 87.6% successfully clustered BAC pools into those positive for a BAC clone harboring a specific gene locus and those negative for it. The location of the positive BAC clones within contigs assembled from 199190 fingerprinted <it>Ae. tauschii </it>BAC clones was used to evaluate the precision of anchoring of BAC clones and contigs on the <it>Ae. tauschii </it>genetic map. For 41 (95%) assays, positive BAC clones were neighbors in single contigs. Those contigs could be unequivocally assigned to loci on the genetic map. For two (5%) assays, positive clones were in two different contigs and the relationships of these contigs to loci on the <it>Ae. tauschii </it>genetic map were equivocal. Screening of BAC libraries with a simple five-dimensional BAC pooling strategy was evaluated and shown to allow direct detection of positive BAC clones without the need for manual deconvolution of BAC clone pools.</p> <p>Conclusion</p> <p>The highly parallel Illumina oligonucleotide assay is shown here to be an efficient tool for screening BAC libraries and a strategy for high-throughput anchoring of BAC contigs on genetic maps during the construction of physical maps of eukaryotic genomes. In most cases, screening of BAC libraries with Illumina oligonucleotide assays results in the unequivocal relationship of BAC clones with loci on the genetic map.</p

    Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape

    Get PDF
    The dagger nematode, Xiphinemaindex, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) × V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks
    corecore