31 research outputs found

    Trends in cutaneous squamous cell carcinoma on the lip incidence and mortality in the United States, 2000–2019

    Get PDF
    ObjectiveThis study provided a systematic analysis of the trend in incidence and incidence-based mortality for cutaneous squamous cell carcinoma (cSCC) on the lips in the USA using demographic characteristics from the Surveillance, Epidemiology, and End Results (SEER) database.MethodsPatients diagnosed with cSCC on the lips between 2000 and 2019 from the 17 registries of the USA were identified. Incidence and incidence-based mortality rates were analyzed using SEER*Stat 8.4.0.1 software. This paper calculated incidence rates and incidence-based mortality rates by 100,000 person-years for sex, age, race, SEER registries, median household income ($/year), rural-urban distribution, and primary site. The annual percent changes (APC) in incidence and incidence-based mortality rates were then calculated using joinpoint regression software.ResultsAmong 8,625 patients diagnosed with cSCC on the lips from 2000 to 2019, men (74.67%), white (95.21%), and 60–79 years old were the most common population, and 3,869 deaths from cSCC on the lips occurred. The overall incidence of cSCC on the lips was 0.516 per 100,000 person-years. cSCC on the lip incidence rates were highest among men, white, and patients aged 60–79 years old. cSCC on the lip incidence rates decreased by 3.210%/year over the study period. The incidence of cSCC on the lips has been decreasing in all sexes, ages, high- or low-income households, and urban or rural patients. The overall incidence-based mortality rate of cSCC on the lips during 2000–2019 was 0.235 per 100,000 person-years. cSCC on the lip incidence-based mortality rates were highest among men, whites, and people older than 80 years old. cSCC on the lip incidence-based mortality increased by 4.975%/year over the study period. cSCC on the lip incidence-based mortality rates increased for all sexes, races, ages, primary sites, high- or low-income households, and urban or rural patients during the study period.ConclusionAmong patients in the USA diagnosed with cSCC on the lips from 2000 to 2019, the overall incidence decreased by 3.210% annually, and incidence-based mortality increased by 4.975%/year. These findings update and supplement the epidemiological information of cSCC on the lips in the USA

    Nanostructured Materials for Energy Storage Devices

    Get PDF
    Driven by the flourishing of renewable energy sources and increasing demands of portable electronics and electric vehicles, high-performance energy storage devices are required for the applications at different scales. Benefiting from the small size, high surface area and hierarchical structures, nanostructured materials have been playing critical roles for the development of advanced energy storage devices. This dissertation will discuss the applications of nanostructured materials to resolve the unique problems for different types of energy storage devices. Chapter 2 provides a new strategy to fabricate a cation exchange membrane features a dense, crack-free tungsten oxide coating layer on Nafion that also penetrates into the Nafion’s hydrophilic, ionic cluster regions. The hierarchical structural designs overcome the inherent tradeoff between conductivity and permeability of ion exchange membranes for redox flow batteries. In Chapter 3, a facile and scalable method is demonstrated to fabricate a 3D lithium metal anode with lithium nitrate, polyvinylidene difluoride, and nano-sized carbon black. The multi-functional 3D electrodes enable dendrite-free lithium metal cycling with high coulombic efficiency. In Chapter 4, a non-toxic, free-standing and flexible cathode is developed by grafting polydopamine on carbon nanotubes for aqueous zinc-ion battery. Cross-linked highly uniform active materials and the efficient conducting network overcome the long term cycling stability issue of aqueous zinc-ion batteries

    A Minimal Volume Hermetic Packaging Design for High-Energy-Density Micro-Energy Systems

    No full text
    Hermetic packaging is critical to the function of many microscale energy storage and harvesting devices. State-of-the-art hermetic packaging strategies for energy technologies, however, are designed for macroscale devices and dramatically decrease the fraction of active materials when applied to micro-energy systems. We demonstrated a minimal volume hermetic packaging strategy for micro-energy systems that increased the volume of active energy storage materials by 2× and 5× compared to the best lab scale microbatteries and commercial pouch cells. The minimal volume design used metal current collectors as a multifunctional hermetic shell and laser-machined hot melt tape to provide a thin, robust hermetic seal between the current collectors with a stronger adhesion to metals than most commercial adhesives. We developed the packaging using commercially available equipment and materials, and demonstrated a strategy that could be applied to many kinds of micro-energy systems with custom shape configurations. This minimal, versatile packaging has the potential to improve the energy density of current micro-energy systems for applications ranging from biomedical devices to micro-robots

    Graph Embedding with Similarity Metric Learning

    No full text
    Graph embedding transforms high-dimensional graphs into a lower-dimensional vector space while preserving their structural information and properties. Context-sensitive graph embedding, in particular, performs well in tasks such as link prediction and ranking recommendations. However, existing context-sensitive graph embeddings have limitations: they require additional information, depend on community algorithms to capture multiple contexts, or fail to capture sufficient structural information. In this paper, we propose a novel Graph Embedding with Similarity Metric Learning (GESML). The core of GESML is to learn the optimal graph structure using an attention-based symmetric similarity metric function and establish association relationships between nodes through top-k pooling. Its primary advantage lies in not requiring additional features or multiple contexts, only using the symmetric similarity metric function and pooling operations to encode sufficient topological information for each node. Experimental results on three datasets involving link prediction and node-clustering tasks demonstrate that GESML significantly improves learning for all challenging tasks relative to a state-of-the-art (SOTA) baseline

    Preliminary Identification of Geological Hazards from Songpinggou to Feihong in Mao County along the Minjiang River Using SBAS-InSAR Technique Integrated Multiple Spatial Analysis Methods

    No full text
    Landslides and collapses are common geological hazards in mountainous areas, posing significant threats to the lives and property of residents. Therefore, early identification of disasters is of great significance for disaster prevention. In this study, we used Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology to process C-band Sentinel-1A images to monitor the surface deformation from Songpinggou to Feihong in Maoxian County, Sichuan Province. Visibility analysis was used to remove the influence of geometric distortion on the SAR images and retain deformation information in the visible area. Hot spot and kernel density analyses were performed on the deformation data, and 18 deformation clusters were obtained. Velocity and slope data were integrated, and 26 disaster areas were interpreted from the 18 deformation clusters, including 20 potential landslides and 6 potential collapses. A detailed field investigation indicated that potential landslides No. 6 and No. 8 had developed cracks and were severely damaged, with a high probability of occurrence. Potential collapse No. 22 had developed fissures, exposing a dangerous rock mass and posing significant threats to the lives and property of residents. This study shows that the proposed method that combines visibility analysis, InSAR deformation rates, and spatial analysis can quickly and accurately identify potential geological disasters and provide guidance for local disaster prevention and mitigation

    A Low-cost Sulfate-based All Iron Redox Flow Battery

    No full text
    Redox flow batteries (RFBs) are promising choices for stationary electric energy storage. Nevertheless, commercialization is impeded by high-cost electrolyte and membrane materials. Here, we report a low-cost all-iron RFB that features inexpensive FeSO4 electrolytes, microporous membrane along with a glass fiber separator. The addition of 0.1 м 1-ethyl-3-methylimidazolium chloride (EMIC) overcomes the low solubility of FeSO4 in water which is raised to 2.2 м. DFT calculations demonstrate that EMI+ can strengthen the interaction between sulfate anions and water molecules. This electrolyte composition also allows both anode and cathode reactions to operate without actively maintaining a pH gradient between them, thus eliminating the need for expensive ion exchange membranes. The all-iron RFB demonstrates stable operation at a current density of 20 mA cm−2 for more than 800 cycles via a simple, periodic regeneration process. Furthermore, the system cost of FeSO4/EMIC RFBs is projected to be $ 50 per kWh due to its low-cost active materials and the inexpensive microporous membrane. This low-cost, high-concentration all-iron RFB is a promising stationary energy‐storage system for storing renewable energy

    Resolving the Compositional and Structural Defects of Degraded LiNi<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub><i>z</i></sub>O<sub>2</sub> Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes

    No full text
    Layered oxide LiNi<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub><i>z</i></sub>O<sub>2</sub> (0 < <i>x</i>,<i>y</i>,<i>z</i> < 1, <i>x</i> + <i>y</i> + <i>z</i> = 1) or NCM is becoming the dominating cathode material in high-energy lithium-ion batteries (LIBs), which have degradation issues after cycling due to Li loss and phase changes. Directly resolving these issues to generate new cathodes cannot only reduce the high cost but also prevent environmental pollution from disposal of used LIBs. However, currently there is no effective approach to tackle this challenge. Here we demonstrate a nondestructive process to directly regenerate degraded NCM cathode particles to obtain new active particles. Using this method, nearly ideal stoichiometry, low cation mixing, and high phase purity were achieved in the regenerated NCM particles, which offer high specific capacity, good cycling stability, and high rate capability, all reaching pristine materials. Our work represents a simple yet efficient approach to directly regenerate high-performance NCM cathodes with distinct advantages over traditional hydrometallurgical methods and builds an important foundation for the sustainable manufacturing of energy materials

    Distribution Pattern and Structure of Vascular Plant Communities in Riparian Areas and Their Response to Soil Factors: A Case Study of Baoan Lake, Hubei Province, China

    No full text
    The vascular plant community in a riparian area is the main substrate and vehicle of many ecological functions for the lakeshores of grass-type shallow lakes. However, there is still a lack of knowledge regarding the responses of vascular plants to soil factors of the habitat in riparian areas, which restricts the ecological adaptation management for riparian vegetation. In this work, a typical grass-type shallow lake (Baoan Lake) in the Yangtze Basin in Central China was taken as the study area. We describe the plant species distribution and community structure in riparian areas under two habitat types (lake and tributary) and their responses to soil factors. The results showed that (1) the soil chemical factors have a significant effect on the distribution and community structure of vascular plants, even though there was a significant interaction among three group factors of soil habitats; (2) compared with other factors, the total nitrogen (TN) and available phosphorus (AP) have the most significant correlations with the distribution of vascular plants; (3) the rate of soil nutrient sorption determines the distribution of vascular species, closely related to the biological characteristics of plants and the microbial enzymatic activity in soil; and (4) vascular plant diversity and the proportion of perennial plants were generally higher in the lakeshore areas than in the tributaries and showed a low-high-low &ldquo;hump-shaped&rdquo; species richness and diversity distribution. The Shannon-Wiener index value increased with the increasing soil-available phosphorus in the surface soil layer. Therefore, this study advanced our knowledge of the species distribution and diversity patterns of lakeshores and tributaries, providing scientific and theoretical guidance for the biodiversity conservation and sustainable ecosystem management of grass-type shallow lakes

    Distribution Pattern and Structure of Vascular Plant Communities in Riparian Areas and Their Response to Soil Factors: A Case Study of Baoan Lake, Hubei Province, China

    No full text
    The vascular plant community in a riparian area is the main substrate and vehicle of many ecological functions for the lakeshores of grass-type shallow lakes. However, there is still a lack of knowledge regarding the responses of vascular plants to soil factors of the habitat in riparian areas, which restricts the ecological adaptation management for riparian vegetation. In this work, a typical grass-type shallow lake (Baoan Lake) in the Yangtze Basin in Central China was taken as the study area. We describe the plant species distribution and community structure in riparian areas under two habitat types (lake and tributary) and their responses to soil factors. The results showed that (1) the soil chemical factors have a significant effect on the distribution and community structure of vascular plants, even though there was a significant interaction among three group factors of soil habitats; (2) compared with other factors, the total nitrogen (TN) and available phosphorus (AP) have the most significant correlations with the distribution of vascular plants; (3) the rate of soil nutrient sorption determines the distribution of vascular species, closely related to the biological characteristics of plants and the microbial enzymatic activity in soil; and (4) vascular plant diversity and the proportion of perennial plants were generally higher in the lakeshore areas than in the tributaries and showed a low-high-low “hump-shaped” species richness and diversity distribution. The Shannon-Wiener index value increased with the increasing soil-available phosphorus in the surface soil layer. Therefore, this study advanced our knowledge of the species distribution and diversity patterns of lakeshores and tributaries, providing scientific and theoretical guidance for the biodiversity conservation and sustainable ecosystem management of grass-type shallow lakes
    corecore