4,410 research outputs found

    AD-Link: An adaptive approach for user identity linkage

    Get PDF
    National Research Foundation (NRF) Singapore under its International Research Centres in Singapore Funding Initiativ

    Genetic variants in ELOVL2 and HSD17B12 predict melanoma‐specific survival

    Get PDF
    Fatty acids play a key role in cellular bioenergetics, membrane biosynthesis and intracellular signaling processes and thus may be involved in cancer development and progression. In the present study, we comprehensively assessed associations of 14,522 common single‐nucleotide polymorphisms (SNPs) in 149 genes of the fatty‐acid synthesis pathway with cutaneous melanoma disease‐specific survival (CMSS). The dataset of 858 cutaneous melanoma (CM) patients from a published genome‐wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used as the discovery dataset, and the identified significant SNPs were validated by a dataset of 409 CM patients from another GWAS from the Nurses’ Health and Health Professionals Follow‐up Studies. We found 40 noteworthy SNPs to be associated with CMSS in both discovery and validation datasets after multiple comparison correction by the false positive report probability method, because more than 85% of the SNPs were imputed. By performing functional prediction, linkage disequilibrium analysis, and stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic hazards ratio of 0.66 (95% confidence interval = 0.51–0.84 and p = 8.34 × 10−4) and 2.29 (1.55–3.39 and p = 3.61 × 10−5), respectively. Finally, the ELOVL2 rs3734398 variant CC genotype was found to be associated with a significantly increased mRNA expression level. These SNPs may be potential markers for CM prognosis, if validated by additional larger and mechanistic studies

    Bovine CD14 gene characterization and relationship between polymorphisms and surface expression on monocytes and polymorphonuclear neutrophils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD14 is an important player in host innate immunity in that it confers lipopolysaccharide sensitivity to cell types like neutrophils, monocytes and macrophages. The study was aimed at characterizing the CD14 gene of cattle for sequence variations and to determine the effect of variations on the expression of the protein on the surfaces of monocytes and neutrophils in healthy dairy cows.</p> <p>Results</p> <p>Five SNPs were identified: two within the coding regions (g.A1908G and g.A2318G, numbering is according to GenBank No. <ext-link ext-link-type="gen" ext-link-id="EU148609">EU148609</ext-link>), one in the 5' (g.C1291T) and two in the 3' (g.A2601G and g.G2621T) untranslated regions. SNP 1908 changes amino acid 175 of the protein (p.Asn175Asp, numbering is according to GenBank No. <ext-link ext-link-type="gen" ext-link-id="ABV68569">ABV68569</ext-link>), while SNP 2318 involves a synonymous codon change. Coding region SNPs characterized three gene alleles <it>A </it>(GenBank No. <ext-link ext-link-type="gen" ext-link-id="EU148609">EU148609</ext-link>), <it>A</it><sub>1 </sub>(GenBank No. <ext-link ext-link-type="gen" ext-link-id="EU148610">EU148610</ext-link>) and <it>B </it>(GenBank No. <ext-link ext-link-type="gen" ext-link-id="EU148611">EU148611</ext-link>) and two deduced protein variants A (<ext-link ext-link-type="gen" ext-link-id="ABV68569">ABV68569</ext-link> and <ext-link ext-link-type="gen" ext-link-id="ABV68570">ABV68570</ext-link>) and B (<ext-link ext-link-type="gen" ext-link-id="ABV68571">ABV68571</ext-link>). Protein variant A is more common in the breeds analyzed. All SNPs gave rise to 3 haplotypes for the breeds. SNP genotype 1908AG was significantly (P < 0.01) associated with a higher percentage of neutrophils expressing more CD14 molecules on their surfaces. The promoter region contains several transcription factor binding sites, including multiple AP-1 and SP1 sites and there is a high conservation of amino acid residues between the proteins of closely related species.</p> <p>Conclusion</p> <p>The study has provided information on sequence variations within the CD14 gene and proteins of cattle. The SNP responsible for an amino acid exchange may play an important role in the expression of CD14 on the surfaces of neutrophils. Further observations involving a larger sample size are required to validate our findings. Our SNP and association analyses have provided baseline information that may be used at defining the role of CD14 in mediating bacterial infections. The computational analysis on the promoter and comparative analysis with other species has revealed regions of regulatory element motifs that may indicate important regulatory effects on the gene.</p

    Acknowledgement Entity Recognition in CORD-19 Papers

    Get PDF
    Acknowledgements are ubiquitous in scholarly papers. Existing acknowledgement entity recognition methods assume all named entities are acknowledged. Here, we examine the nuances between acknowledged and named entities by analyzing sentence structure. We develop an acknowledgement extraction system, AckExtract based on open-source text mining software and evaluate our method using manually labeled data. AckExtract uses the PDF of a scholarly paper as input and outputs acknowledgement entities. Results show an overall performance of F1=0.92. We built a supplementary database by linking CORD-19 papers with acknowledgement entities extracted by AckExtract including persons and organizations and find that only up to 50–60% of named entities are actually acknowledged. We further analyze chronological trends of acknowledgement entities in CORD-19 papers. All codes and labeled data are publicly available at https://github.com/lamps-lab/ackextract

    NELFE-Dependent MYC Signature Identifies a Unique Cancer Subtype in Hepatocellular Carcinoma.

    Get PDF
    The MYC oncogene is dysregulated in approximately 30% of liver cancer. In an effort to exploit MYC as a therapeutic target, including in hepatocellular carcinoma (HCC), strategies have been developed on the basis of MYC amplification or gene translocation. Due to the failure of these strategies to provide accurate diagnostics and prognostic value, we have developed a Negative Elongation Factor E (NELFE)-Dependent MYC Target (NDMT) gene signature. This signature, which consists of genes regulated by MYC and NELFE, an RNA binding protein that enhances MYC-induced hepatocarcinogenesis, is predictive of NELFE/MYC-driven tumors that would otherwise not be identified by gene amplification or translocation alone. We demonstrate the utility of the NDMT gene signature to predict a unique subtype of HCC, which is associated with a poor prognosis in three independent cohorts encompassing diverse etiologies, demographics, and viral status. The application of gene signatures, such as the NDMT signature, offers patients access to personalized risk assessments, which may be utilized to direct future care
    corecore