507 research outputs found

    AIDing Contraception: HIV and Recent Trends in Abortion Rates

    Get PDF
    Since the onset of HIV/AIDS awareness in the early 1980s, much attention has centered around the substantial negative effects of the disease throughout the world. This paper provides evidence of a secondary effect the disease has had on sexual behavior in the United States. Using a difference-in-differences estimation framework and state level data, we show that the perceived threat of HIV resulted in a drop in unwanted pregnancies, as demonstrated by a lower incidence of abortions. Our results suggest that each additional reported case of HIV per 1,000 individuals resulted in 85.5 fewer abortions per 1,000 live births.

    基于Scopus的植物表型组学研究进展分析

    Get PDF
    Bibliometric analyses are capable of demonstrating the history and the tendency of scientific and technological development. This article aims to use big scientific data to explore the present status of plant phenomics, based on which sound recommendations could be provided for the development of this emerging research domain. [Methods] Based on academic outputs such as research publications, citations, collaborations, research areas, academic organizations, and authors retrieved from the Scopus database between 2013 and September 2018, statistical analysis tools such as SciVal and CiteSpace 5.0 were applied to quantitatively visualize the development and tendency of plant phenotyping, plant phenomics, and related research areas. [Results] This Scopus-based research has retrieved 20 953 articles that are related to plant phenotyping, plant phenomics, and related applications in plant research, with a total citation of 217 105 and 2.0% of them are TOP1% highly cited papers. According to total citations, the TOP10 countries are the United States, China, Germany, the United Kingdom, France, Japan, Australia, Spain, Canada, and the Netherlands. The TOP10 research organizations based on total citations are Chinese Academy of Sciences (CAS), Institut National de la Recherche Agronomique (INRA), the US Department of Agriculture, Centre National de la Recherche Scientifique (CNRS), Chinese Academy of Agricultural Sciences, Cornell University, Spanish National Research Council, University of California at Davis, Universite Paris-Sacly, and Wageningen University & Research. The scholar with the most academic outputs is Alisdair Robert Fernie at the Koch Planck Institute of Molecular Plant Physiology, Germany. He has published 58 papers using plant cellular phenotypes and was cited 1 246 times. At present, plant phenomics research has focused on a number of plant species, including Arabidopsis, rice, wheat, corn, tomato and soybean. [Conclusion] As an emerging research domain, plant phenomics requires interdisciplinary efforts to integrate agriculture, cultivation, breeding, and other plant biological research with computing sciences. In particular, high-throughput image analysis and related data analysis has become an important research theme at the present stage, with the topical saliency index reaches 98.8%, a very high relevance score

    Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition

    Get PDF
    Frequent wildfires associated with emplacement of the Central Atlantic Magmatic Province (CAMP) are thought to have been important drivers of two significant changes in terrestrial plant communities and diversity during the Triassic-Jurassic Mass Extinction (TJME, ca. 201.51 Ma). ​However, it remains to be investigated whether these two changes are potentially related to different wildfire types. To better understand this relationship, we used a new method to reanalyze fossil pollen and spores across the Triassic-Jurassic transition in the Jiyuan Basin from the North China Plate. Results show that two peaks in wildfire frequency experienced different types of wildfires, with each linked to significant changes in plant communities and diversity losses. In the first wildfire peak, canopy fires dominated and are accompanied by significant losses of canopy forming plants, while in the second wildfire peak, ground cover fires dominated accompanied by significant losses of ground cover plants. ​Changes in atmospheric humidity conditions were an important control on the two different wildfire peaks. Relatively humid climatic conditions corresponded to the prevalence of canopy fires and hindered the spread and development of ground cover fires in wet surface conditions. Conversely, relatively arid climatic conditions corresponded with the prevalence of ground cover fires in dry surface environments. Our results provide a potential relationship between terrestrial plant communities and wildfire types, which is important to further understanding of terrestrial environmental and floral changes driven by Large Igneous Provinces

    Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition

    Get PDF
    Frequent wildfires associated with emplacement of the Central Atlantic Magmatic Province (CAMP) are thought to have been important drivers of two significant changes in terrestrial plant communities and diversity during the Triassic-Jurassic Mass Extinction (TJME, ca. 201.51 Ma). ​However, it remains to be investigated whether these two changes are potentially related to different wildfire types. To better understand this relationship, we used a new method to reanalyze fossil pollen and spores across the Triassic-Jurassic transition in the Jiyuan Basin from the North China Plate. Results show that two peaks in wildfire frequency experienced different types of wildfires, with each linked to significant changes in plant communities and diversity losses. In the first wildfire peak, canopy fires dominated and are accompanied by significant losses of canopy forming plants, while in the second wildfire peak, ground cover fires dominated accompanied by significant losses of ground cover plants. ​Changes in atmospheric humidity conditions were an important control on the two different wildfire peaks. Relatively humid climatic conditions corresponded to the prevalence of canopy fires and hindered the spread and development of ground cover fires in wet surface conditions. Conversely, relatively arid climatic conditions corresponded with the prevalence of ground cover fires in dry surface environments. Our results provide a potential relationship between terrestrial plant communities and wildfire types, which is important to further understanding of terrestrial environmental and floral changes driven by Large Igneous Provinces
    corecore