129 research outputs found

    Avian Tembusu virus infection effectively triggers host innate immune response through MDA5 and TLR3-dependent signaling pathways

    Get PDF
    Additional file 4 ATMUV infection causes significant up-regulation of TLR3 and MDA5. RT-PCR was performed to examine the mRNA expression of TLR3 and MDA5 in CEF (A), chickens (B) and 293T cells (C) at the indicated time after ATMUV infection, respectively

    Magnetic moment evolution and spin freezing in doped BaFe 2 As 2

    Get PDF
    Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μbare in electron- and hole-doped BaFe2As2. At low temperature, μbare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μbare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe2As2, and the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides

    Fifth-degree elastic energy for predictive continuum stress–strain relations and elastic instabilities under large strain and complex loading in silicon

    Get PDF
    Materials under complex loading develop large strains and often phase transformation via an elastic instability, as observed in both simple and complex systems. Here, we represent a material (exemplified for Si I) under large Lagrangian strains within a continuum description by a 5th-order elastic energy found by minimizing error relative to density functional theory (DFT) results. The Cauchy stress—Lagrangian strain curves for arbitrary complex loadings are in excellent correspondence with DFT results, including the elastic instability driving the Si I → II phase transformation (PT) and the shear instabilities. PT conditions for Si I → II under action of cubic axial stresses are linear in Cauchy stresses in agreement with DFT predictions. Such continuum elastic energy permits study of elastic instabilities and orientational dependence leading to different PTs, slip, twinning, or fracture, providing a fundamental basis for continuum physics simulations of crystal behavior under extreme loading

    Duck cGAS inhibits DNA and RNA virus replication by activating IFNs and antiviral ISGs

    Get PDF
    Cyclic GMP-AMP Synthase (cGAS) is a pivotal adaptor of the signaling pathways involving the pattern recognition receptors and plays an important role in apoptosis and immune regulation. The cGAS function in mammals has been investigated extensively; however, the function of duck cGAS (du-cGAS) in response to viral infections is still unclear. This study aimed to clone the mallard (Anas platyrhynchos) cGAS homolog to investigate the function of duck cGAS (du-cGAS) in host antiviral innate immunity. The results showed that the open reading frame (ORF) region of the du-cGAS gene was 1296 bp, encoding 432 amino acids (aa) and exhibiting similar functional domains with its chicken counterpart. Knockdown of the endogenous du-cGAS by specific sgRNA strongly increased the replication of DNA viruses, including duck adenovirus B2 (DAdV B2) and duck short beak and dwarfism syndrome virus (SBDSV). However, the knockout did not impair the replication of novel duck reovirus (NDRV), an RNA virus. Furthermore, the mRNA expressions of type I interferon (IFNs) and vital interferon-stimulated genes (ISGs) were remarkably reduced in the du-cGAS knockout DEF cell line. Inversely, du-cGAS overexpression greatly activated the transcription of IFN-α, IFN-β, and vital ISGs, and impaired the replication of DAdV B2, SBDSV, and NDRV in the DEF cell line. Importantly, we found that a deletion of 68 aa in the N terminus didn’t impair the antiviral function of du-cGAS. Overexpressing NTase Core, C-Domain (Mab21), or Zinc-Ribbon domain independently had no antiviral effects. Generally, these results reveal that du-cGAS is a vital component of the innate immune system of ducks, with a universal antiviral activity, and provides a useful strategy for the control of waterfowl viral diseases
    • …
    corecore