1,887 research outputs found
Recommended from our members
Compressive deformation and failure of CrAlN/Si3N4 nanocomposite coatings
The deformation and failure mechanisms of CrAlN/Si3N4 coatings containing grains a few nanometres in size have been compared with those of conventional CrN-based coatings. It is shown that the addition of amorphous Si3N4 phase increased the yield stress and hardness of the coating material, but did not change their ratio. This is consistent with theoretical predictions using existing models. However, cracking in conventional CrN-based coatings was catastrophic, whereas that in the fine-grained CrAlN/Si3N4 structure was much more benign, suggesting that the improved performance of these materials is associated with their fracture behaviours.This research was funded by A*STAR, Singapore and the Engineering and Physical Sciences
Research Council (EPSRC) and Rolls-Royce Strategic Partnership “Structural Metallic Systems
for Advanced Gas Turbine Applications” (EP/H500375/1).This is the accepted version of an article published in Applied Physics Letters. The final version is available online at http://scitation.aip.org/content/aip/journal/apl/104/8/10.1063/1.4867017. © 2014 AIP Publishing LL
Plastic flow at the theoretical yield stress in ceramic films
Using fine-grained ceramic films based on chromium nitride, and suppressing fracture by using microcompression, it is shown that plastic flow at the theoretical yield stress can be obtained in brittle materials, with shear yield stresses of ~ G/24 at room temperature, which extrapolate to ~ G/19 at 0 K. Surprisingly, it is also found that the rate of deformation, and hence the hardness and the yield stress, are determined not by the soft, glassy grain boundary phase in the fine-grained materials, but by the harder crystal phase.This research was funded by A*STAR, Singapore and the Engineering and Physical Sciences Research Council (EPSRC) and Rolls-Royce Strategic Partnership (EP/H500375/1)
Sustainable enzymatic technologies in waste animal fat and protein management.
Waste animal fats and proteins (WAFP) are rich in various animal by-products from food industries. On one hand, increasing production of huge amounts of WAFP brings a great challenge to their appropriate disposal, and raises severe risks to environment and life health. On the other hand, the high fat and protein contents in these animal wastes are valuable resources which can be reutilized in an eco-friendly and renewable way. Sustainable enzymatic technologies are promising methods for WAFP management. This review discussed the application of various enzymes in the conversion of WSFP to value-added biodiesel and bioactivate hydrolysates. New biotechnologies to discover novel enzymes with robust properties were proposed as well. This paper also presented the bio-utilization strategy of animal fat and protein wastes as alternative nutrient media for microorganism growth activities to yield important industrial enzymes cost-effectively
Bioprocessing for elimination antibiotics and hormones from swine wastewater
© 2017 Elsevier B.V. Antibiotics and hormones in swine wastewater have become a critical concern worldwide due to the severe threats to human health and the eco-environment. Removal of most detectable antibiotics and hormones, such as sulfonamides (SAs), SMs, tetracyclines (TCs), macrolides, and estrogenic hormones from swine wastewater utilizing various biological processes were summarized and compared. In biological processes, biosorption and biodegradation are the two major removal mechanisms for antibiotics and hormones. The residuals in treated effluents and sludge of conventional activated sludge and anaerobic digestion processes can still pose risks to the surrounding environment, and the anaerobic processes’ removal efficiencies were inferior to those of aerobic processes. In contrast, membrane bioreactors (MBRs), constructed wetlands (CWs) and modified processes performed better because of their higher biodegradation of toxicants. Process modification on activated sludge, anaerobic digestion and conventional MBRs could also enhance the performance (e.g. removing up to 98% SMs, 88.9% TCs, and 99.6% hormones from wastewater). The hybrid process combining MBRs with biological or physical technology also led to better removal efficiency. As such, modified conventional biological processes, advanced biological technologies and MBR hybrid systems are considered as a promising technology for removing toxicants from swine wastewater
Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China
Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids. The Middle and Late Permian (Guadalupian and Lopingian Series) witnessed dominance of gondolellids (Jinogondolella and Clarkina), the common presence of Hindeodus and decimation of Sweetognathus. Twenty main and seven subordinate conodont zones are recognised at Tieqiao, spanning the lower Artinskian to the middle Wuchiapingian Stage. The main (first appearance datum) zones are, in ascending order by stage: the Sweetognathus (Sw.) whitei, Sw. toriyamai, and Sw. asymmetrica n. sp. Zones for the Artinskian; the Neostreptognathodus prayi, Sw. guizhouensis, Sw. iranicus, Sw. adjunctus, Sw. subsymmeticus and Sw. hanzhongensis Zones for the Kungurian; the Jinogondolella (J.) nankingensis Zone for the Roadian; the J. aserrata Zone for the Wordian; the J. postserrata, J. shannoni, J. altudaensis, J. prexuanhanensis, J. xuanhanensis, J. granti and Clarkina (C.) hongshuiensis Zones for the Capitanian and the C. postbitteri Zone and C. transcaucasica Zone for the base and middle of the Wuchiapingian. The subordinate (interval) zones are the Pseudosweetognathus (Ps.) costatus, Ps. monocornus, Hindeodus (H.) gulloides, Pseudohindeodus ramovsi, Gullodus (G.) sicilianus, G. duani and H. excavates Zones. In addition, three new species, Gullodus tieqiaoensis n. sp., Pseudohindeodus elliptica n. sp. and Sweetognathus asymmetrica n. sp. are described. Age assignments for less common species (e.g., G. duani, H. catalanoi and Pseudosweetognathus monocornus etc.) are reassessed based on a rich conodont collection
Effect of gas volume fraction on vortex motion in hydraulic turbine
In order to analyze the vortex motion in the flow channel of the hydraulic turbine impeller during the gas volume fraction change. Now, the pump with a specific speed of 55.7 is chosen as hydraulic turbine. On the basis of considering the gas compressibility, to take numerical calculation on the model under different flow rates and different gas volume fraction, to analyze the influence of gas volume fraction on vortex motion law in the impeller flow channel. Findings: When the flow rate is small, the relative velocity distribution in the impeller flow channel is uneven, the velocity field is chaotic, and there are obvious vortices, with the increase of the gas volume fraction, the vortices in the impeller flow channel gradually move to the inlet direction of the blade; With the increase of the flow rate, the flow in the channel of the hydraulic turbine impeller is unstable. Both the pressure surface and the suction surface of the blade appear vortices, the vortex region in the impeller flow channel is enlarged, and all of them are concentrated on the back of the blade. The results provide a theoretical basis for the optimal design of hydraulic turbine structures
AlN/CrN multilayer structures with increased thermal stability
CrAlYN nanolayered coatings of greatly enhanced thermal stability have been developed by doping with levels of Y up to 9 at.%. This prevented the complete dissolution of the layered structure after annealing at 1100 °C in Ar for 1 h, commonly observed in coatings with little or no Y content, although the bilayer period increased from ~ 5 nm to ~ 10 nm. The improved thermal stability is attributed to the formation of a continuous YN layer between the CrN and AlN layers, reducing the rate of interdiffusion
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
- …