17,965 research outputs found

    Analysis of the transient calibration of heat flux sensors: One dimensional case

    Get PDF
    The effect of transient heat flux on heat flux sensor response and calibration is analyzed. A one dimensional case was studied in order to elucidate the key parameters and trends for the problem. It has the added advantage that the solutions to the governing equations can be obtained by analytic means. The analytical results obtained to date indicate that the transient response of a heat flux sensor depends on the thermal boundary conditions, the geometry and the thermal properties of the sensor. In particular it was shown that if the thermal diffusivity of the sensor is small, then the transient behavior must be taken into account

    Macroscopical Entangled Coherent State Generator in V configuration atom system

    Full text link
    In this paper, we propose a scheme to produce pure and macroscopical entangled coherent state. When a three-level ''V'' configuration atom interacts with a doubly reasonant cavity, under the strong classical driven condition, entangled coherent state can be generated from vacuum fields. An analytical solution for this system under the presence of cavity losses is also given

    All-Optical control of linear and nonlinear energy transfer via Zeno effect

    Full text link
    Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2)\chi^{(2)}) or third- χ(3)\chi^{(3)}) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this letter, we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2))\chi^{(2)}) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via Zeno effect. Such effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.534.5.Comment: 3 figures, to appear in Phys. Rev. Let
    • …
    corecore