902 research outputs found

    The radio-far infrared correlation: Spiral and blue compact dwarf galaxies opposed

    Get PDF
    The recently established correlation between radio continuum and far infrared emission in galaxies was further investigated by comparing normal spiral and blue compact dwarf galaxies. The puzzling result is that the ratio of radio to far infrared luminosity and its dispersion is the same for both samples, although their ratios of blue to far infrared luminosity, their radio spectral indices and their dust temperatures exhibit markedly different mean values and dispersions. This suggests that the amount of energy radiated in the two regimes is enhanced in the same way although the mechanisms responsible for the two components are rather different and complex. The fact that the blue light does not increase at the same proportion shows that both the radio and the far infrared emission are connected with the recent star formation history

    Radio continuum, far infrared and star formation

    Get PDF
    A very tight correlation was found between the radio emission and the far infrared emission from galaxies. This has been found for various samples of galaxies and is explained in terms of recent star formation. The tight correlation would imply that the total radio emission is a good tracer of star formation. The correlation between the radio power at 5 GHz and the far infrared luminosity is shown. The galaxies are of various morphological types and were selected from the various IRAS circulars, hence the sample is an infrared selected sample. The far infrared luminosities were corrected for the dust temperature. This is significant because it decreases the dispersion in the correlation

    Study of ambiguities in πpΛK0\pi^-p\to \Lambda K^0 scattering amplitudes

    Full text link
    Amplitudes for the reaction πpΛK0\pi^-p\to \Lambda K^0 are reconstructed from data on the differential cross section dσ/dΩd\sigma/d\Omega, the recoil polarization PP, and on the spin rotation parameter β\beta. At low energies, no data on β\beta exist, resulting in ambiguities. An approximation using SS and PP waves leads only to a fair description of the data on dσ/dΩd\sigma/d\Omega and PP; in this case, there are two sets of amplitudes. Including DD waves, the data on dσ/dΩd\sigma/d\Omega and PP are well reproduced by the fit but now, there are several distinct solutions which describe the data with identical precision. In the range where the spin rotation parameter β\beta was measured, a full and unambiguous reconstruction of the partial wave amplitudes is possible. The energy-independent amplitudes are compared to the energy dependent amplitudes which resulted from a coupled channel fit (BnGa2011-02) to a large data set including both pion and photo-induced reactions. Significant deviations are observed. Consistency between energy dependent and energy independent solutions by choosing the energy independent solution which is closest to the energy dependent solution. In a second step, the {\it known} energy dependent solution for low (or high) partial waves is imposed and only the high (or low) partial waves are fitted leading to smaller uncertainties

    Photometric Observations of Star Formation Activity in Early Type Spirals

    Full text link
    We observationally study the current star formation activities of early type spiral galaxies. We construct a complete sample of 15 early type spirals having far-infrared (FIR) to optical B band luminosity ratios, L(FIR)/L(B), larger than the average of the type, and make their CCD imaging of the R and H-alpha bands. The equivalent widths of H-alpha emission increase with increasing L(FIR)/L(B), indicating that L(FIR)/L(B) can be an indicator of star formation for such early type spirals with star formation activities higher than the average. For all of the observed early type spirals, the extended HII regions exist at the central regions with some asymmetric features. H-alpha emission is more concentrated to the galactic center than the R band light, and the degree of the concentration increases with the star formation activity. We also analyze the relation between the star formation activities and the existence of companion galaxies in the sample galaxies and other bright early type spirals. No correlation is found and this suggests that the interaction is not responsible for all of the star formation activities of early type spirals.Comment: LaTex, 23 pages (2 tables included), plus 9 Postscript figures & 1 table. To be published in AJ (November issue

    Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As

    Full text link
    It has been demonstrated that magnetocrystalline anisotropies in (Ga,Mn)As are sensitive to lattice strains as small as 10^-4 and that strain can be controlled by lattice parameter engineering during growth, through post growth lithography, and electrically by bonding the (Ga,Mn)As sample to a piezoelectric transducer. In this work we show that analogous effects are observed in crystalline components of the anisotropic magnetoresistance (AMR). Lithographically or electrically induced strain variations can produce crystalline AMR components which are larger than the crystalline AMR and a significant fraction of the total AMR of the unprocessed (Ga,Mn)As material. In these experiments we also observe new higher order terms in the phenomenological AMR expressions and find that strain variation effects can play important role in the micromagnetic and magnetotransport characteristics of (Ga,Mn)As lateral nanoconstrictions.Comment: 11 pages, 4 figures, references fixe

    Thermodynamic interpretation of the scaling of the dynamics of supercooled liquids

    Full text link
    The recently discovered scaling law for the relaxation times, tau=f(T,V^g), where T is temperature and V the specific volume, is derived by a revision of the entropy model of the glass transition dynamics originally proposed by Avramov [I. Avramov, J. Non-Cryst. Solids 262, 258 (2000).]. In this modification the entropy is calculated by an alternative route, while retaining the approximation that the heat capacity is constant with T and P. The resulting expression for the variation of the relaxation time with T and V is shown to accurately fit experimental data for several glass-forming liquids and polymers over an extended range encompassing the dynamic crossover. From this analysis, which is valid for any model in which the relaxation time is a function of the entropy. we find that the scaling exponent g can be identified with the Gruneisen constant.Comment: 24 pages, 7 figure

    Zeno Dynamics of von Neumann Algebras

    Full text link
    The dynamical quantum Zeno effect is studied in the context of von Neumann algebras. We identify a localized subalgebra on which the Zeno dynamics acts by automorphisms. The Zeno dynamics coincides with the modular dynamics of that subalgebra, if an additional assumption is satisfied. This relates the modular operator of that subalgebra to the modular operator of the original algebra by a variant of the Kato-Lie-Trotter product formula.Comment: Revised version; further typos corrected; 9 pages, AMSLaTe

    High-fidelity state detection and tomography of a single ion Zeeman qubit

    Full text link
    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error-threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography

    The Impact of New Polarization Data from Bonn, Mainz and Jefferson Laboratory on γpπN\gamma p \to \pi N Multipoles

    Full text link
    New data on pion-photoproduction off the proton have been included in the partial wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach J\"ulich-Bonn. All reproduce the recent new data well: the double polarization data for E, G, H, P and T in γpπ0p\gamma p \to \pi^0 p from ELSA, the beam asymmetry Σ\Sigma for γpπ0p\gamma p \to \pi^0 p and π+n\pi^+ n from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data Σ\Sigma for γpπ0p\gamma p \to \pi^0 p from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. The mutual agreement is improved considerably but still far from being perfect
    corecore