2,626 research outputs found

    The Design and Research of a New Low Cobalt-molybdenum Niobium-containing Ni-base Superalloy for 700 ̊C Advanced Ultra-supercritical Power Plants

    Get PDF
    AbstractA new Ni-base Nb-containing supealloy of low Co-Mo, Ni-24Cr-16(Co+Mo+W)-4.5(Nb+Ti+Al)-0.03C (wt. %), was designed for 700°C advanced ultra-super-critical power plant application, and the boiler superheater/reheater tubes were successfully manufactured. The alloy design was conducted by thermodynamics and dynamics calculation using Thermal-Calc and JmatPro commercial software. The microstructural stability of the new alloy was evaluated by FESEM and TEM. The mechanical properties, such as microhardness and impact toughness at room temperature, were also tested. The calculation results show that molybdenum promotes the formation of σ and μ phase obviously and cobalt promotes the formation of η, σ, and μ simultaneously. In addition, high molybdenum content will decrease the flue gas ash corrosion resistance and cobalt is a kind of strategic resource in the world. Therefore, the concept of “low Co-Mo Ni-base superalloy” was determined. The implementation of “Low Co-Mo” can reduce cost, restrain the formation of harmful phases as well as ensure good oxidation/corrosion resistance on the basis of high Cr content. To optimize the new alloy, both the combined solid solution strengthening of Cr-Co-Mo-W and the precipitation strengthening elements Nb, Ti and Al are adopted, because Nb is a good γ’-strengthening element in combination with Ti and Al for Ni-base superalloy. The experimental results of SEM and TEM show that no harmful phases precipitate after 1000 h-aging at 760°C and 800°C, and the γ′ coarsening rate is low, which reveals a good microstructure stability of this new alloy

    Maxwell Chern Simons Theory in a Geometric Representation

    Full text link
    We quantize the Maxwell Chern Simons theory in a geometric representation that generalizes the Abelian Loop Representation of Maxwell theory. We find that in the physical sector, the model can be seen as the theory of a massles scalar field with a topological interaction that enforces the wave functional to be multivalued. This feature allows to relate the Maxwell Chern Simons theory with the quantum mechanics of particles interacting through a Chern Simons fieldComment: 12 pages, LaTe

    Interacting Particles and Strings in Path and Surface Representations

    Full text link
    Non-relativistic charged particles and strings coupled with abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. We consider three models: the string in self-interaction through a Kalb-Ramond field in four dimensions, the topological interaction of two particles due to a BF term in 2+1 dimensions, and the string-particle interaction mediated by a BF term in 3+1 dimensions. In the first case one finds that a consistent "surface-representation" can be built provided that the coupling constant is quantized. The geometrical setting that arises corresponds to a generalized version of the Faraday's lines picture: quantum states are labeled by the shape of the string, from which emanate "Faraday`s surfaces". In the other models, the topological interaction can also be described by geometrical means. It is shown that the open-path (or open-surface) dependence carried by the wave functional in these models can be eliminated through an unitary transformation, except by a remaining dependence on the boundary of the path (or surface). These feature is closely related to the presence of anomalous statistics in the 2+1 model, and to a generalized "anyonic behavior" of the string in the other case.Comment: RevTeX 4, 28 page

    Energy Spectrum of Anyons in a Magnetic Field

    Full text link
    For the many-anyon system in external magnetic field, we derive the energy spectrum as an exact solution of the quantum eigenvalue problem with particular topological constraints. Our results agree with the numerical spectra recently obtained for the 3- and the 4-anyon systems.Comment: 11 pages in Plain LaTeX (plus 4 figures available on request), DFPD 92/TH/4

    Perturbative Formulation and Non-adiabatic Corrections in Adiabatic Quantum Computing Schemes

    Get PDF
    Adiabatic limit is the presumption of the adiabatic geometric quantum computation and of the adiabatic quantum algorithm. But in reality, the variation speed of the Hamiltonian is finite. Here we develop a general formulation of adiabatic quantum computing, which accurately describes the evolution of the quantum state in a perturbative way, in which the adiabatic limit is the zeroth-order approximation. As an application of this formulation, non-adiabatic correction or error is estimated for several physical implementations of the adiabatic geometric gates. A quantum computing process consisting of many adiabatic gate operations is considered, for which the total non-adiabatic error is found to be about the sum of those of all the gates. This is a useful constraint on the computational power. The formalism is also briefly applied to the adiabatic quantum algorithm.Comment: 5 pages, revtex. some references adde

    Correlation of the Cd-to-Te ratio on CdTe surfaces with the surface structure

    Get PDF
    We report here that reconstruction on (100), (1lIlA, and (1l1lB CdTe surfaces is either C(2X2), (2X2), and (l X I) or (2X I), (l X I), and (l X I) when they are Cd or Te stabilized, respectively. There is a mixed region between Cd and Te stabilization in which the reflected high-energy electron-diffraction (RHEED) patterns contain characteristics of both Cd- and Te-stabilized surfaces. We have also found that the Cd-to-Te ratio of the x-ray photoelectron intensities of their 3d3/2_{3/ 2} core levels is about 20% larger for a Cd-stabilized (1lIlA, (1lIlB, or (100) CdTe surface than for a Te-stabilized one. According to a simple model calculation, which was normalized by means of the photoelectron intensity ratio of a Cd-stabilized (lll)A and aTe-stabilized (1l1lB CdTe surface, the experimental data for CdTe surfaces can be explained by a linear dependence of the photoelectron-intensity ratio on the fraction of Cd in the uppermost monatomic layer. This surface composition can be correlated with the surface structure, i.e., the corresponding RHEED patterns. This correlation can in turn be employed to determine Te and Cd evaporation rates. The Te reevaporation rate is increasingly slower for the Te-stabilized (Ill) A, (l1l)B, and (100) surfaces, while the opposite is true for Cd from Cd-stabilized (Ill) A and (Ill)B surfaces. In addition, Te is much more easily evaporated from all the investigated surfaces than is Cd, if the substrate is kept at normal molecular-beam-epitaxy growth temperatures ranging from 2oo·C to 300 ·C

    Acute effects of ambient nitrogen oxides and interactions with temperature on cardiovascular mortality in Shenzhen, China

    Get PDF
    Background: Though inconsistent, acute effects of ambient nitrogen oxides on cardiovascular mortality have been reported. Whereas, interactive roles of temperature on their relationships and joint effects of different indicators of nitrogen oxides were less studied. This study aimed to extrapolate the independent roles of ambient nitrogen oxides and temperature interactions on cardiovascular mortality.Methods: Data on mortality, air pollutants, and meteorological factors in Shenzhen from 2013 to 2019 were collected. Three indicators including nitric oxide (NO), nitrogen dioxide (NO2), and nitrogen oxides (NOX) were studied. Adjusted generalized additive models (GAMs) were applied to analyse their associations with cardiovascular mortality in different groups.Results: The average daily concentrations of NO, NO2, and NOX were 11.7 mu g/m(3), 30.7 mu g/m(3), and 53.2 mu g/m(3), respectively. Significant associations were shown with each indicator. Cumulative effects of nitrogen oxides were more obvious than distributed lag effects. Males, population under 65 years old, and population with stroke related condition were more susceptible to nitrogen oxides. Adverse effects of nitrogen oxides were more significant at low temperature. Impacts of NO2 on cardiovascular mortality, and NO on stroke mortality were the most robust in the multi-pollutant models, whereas variations were shown in the other relationships.Conclusions: Low levels of nitrogen oxides showed acute and adverse impacts and the interactive roles of temperature on cardiovascular mortality. Cumulative effects were most significant and joint effects of nitrogen oxides required more attention. Population under 65 years old and population with stroke-related health condition were susceptible, especially days at lower temperature

    "quasi-particles" in bosonization theory of interacting fermion liquids at arbitrary dimensions

    Full text link
    Within bosonization theory we introduce in this paper a new definition of "quasi-particles" for interacting fermions at arbitrary space dimenions. In dimensions higher than one we show that the constructed quasi-particles are consistent with quasi-particle descriptions in Landau Fermi liquid theory whereas in one-dimension the quasi-particles" are non-perturbative objects (spinons and holons) obeying fractional statistics. The more general situation of Fermi liquids with singular Landau interaction is discussed.Comment: 10 page
    corecore