105 research outputs found

    A phase-space study of jet formation in planetary-scale fluids

    Full text link
    The interaction between planetary waves and an arbitrary zonal flow is studied from a phase-space viewpoint. Using the Wigner distribution, a planetary wave Vlasov equation is derived that includes the contribution of the mean flow to the zonal potential vorticity gradient. This equation is applied to the problem of planetary wave modulational instability, where it is used to predict a fastest growing mode of finite wavenumber. A wave-mean flow numerical model is used to test the analytical predictions, and an intuitive explanation of modulational instability and jet asymmetry is given via the motion of planetary wavepackets in phase space.Comment: 10 pages, 10 figure

    Earth’s polar night boundary layer as an analogue for dark side inversions on synchronously rotating terrestrial exoplanets

    Get PDF
    A key factor in determining the potential habitability of synchronously rotating planets is the strength of the atmospheric boundary layer inversion between the dark side surface and the free atmosphere. Here we analyse data obtained from polar night measurements at the South Pole and Alert Canada, which are the closest analogues on Earth to conditions on the dark sides of synchronously rotating exoplanets without and with a maritime influence, respectively. On Earth, such inversions rarely exceed 30 K in strength, because of the effect of turbulent mixing induced by phenomena such as so-called mesoscale slope winds, which have horizontal scales of 10s to 100s of km, suggesting a similar constraint to near-surface dark side inversions. We discuss the sensitivity of inversion strength to factors such as orography and the global-scale circulation, and compare them to a simulation of the planet Proxima Centauri b. Our results demonstrate the importance of comparisons with Earth data in exoplanet research, and highlight the need for further studies of the exoplanet atmospheric collapse problem using mesoscale and eddy-resolving models

    Predictions of the atmospheric composition of GJ 1132b

    Get PDF
    GJ 1132 b is a nearby Earth-sized exoplanet transiting an M dwarf, and is amongst the most highly characterizable small exoplanets currently known. In this paper we study the interaction of a magma ocean with a water-rich atmosphere on GJ 1132b and determine that it must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ~10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The most common outcome for GJ 1132 b from our simulations is a tenuous atmosphere dominated by O2, although for very large initial water abundances atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system's lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132 b. Further modeling is needed to study the evolution of CO2 or N2-rich atmospheres on GJ 1132 b.Comment: 14 pages, 11 figures, accepted at Ap

    Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications

    Full text link
    Several clues indicate that Titan's atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates throughout Titan's history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds. We show that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. Alternatively, nitrogen could be frozen on the surface like on Triton, but this would require an initial surface albedo higher than 0.65 at 4 Ga. Such a state could be stable even today if nitrogen ice albedo is higher than this value. According to our model, nitrogen flows and rain may have been efficient to erode the surface. Thus, we can speculate that a paleo-nitrogen cycle may explain the erosion and the age of Titan's surface, and may have produced some of the present valley networks and shorelines. Moreover, by diffusion of liquid nitrogen in the crust, a paleo-nitrogen cycle could be responsible of the flattening of the polar regions and be at the origin of the methane outgassing on Titan.Comment: Accepted for publication in Icarus on July 7, 201
    • …
    corecore