12 research outputs found

    Application of a full potential method to AGARD standard airfoils

    Get PDF
    One of the most important uses of method that calculate unsteady aerodynamic loads is to predict and analyze the aeroelastic responses of flight vehicles. Currently, methods based on transonic small disturbance potential aerodynamics are the primary tools for aeroelastic analysis. Flow solutions obtained using isentropic potential theory can be highly inaccurate and even multivalued, because they do not model the effects of entropy that is produced when shock waves are in the flow field. From the results that are presented, it is concluded that nonisentropic potential methods more accurately model Euler solutions than do isentropic methods. The primary effects of modeling shock generated entropy are: (1) to eliminate mulitple flow solutions when strong shock waves are in the flow field; and (2) to bring the strengths and locations of computed shock waves into better agreement with those calculated using Euler method and those measured during experiments

    Application of a nonisentropic full potential method to AGARD standard airfoils

    Get PDF
    An entropy-correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to model the entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Calculated results are presented for the NLR 7301, NACA 0012, and NACA 64A010A airfoils. Comparisons of the present method and solutions of the Euler equations are presented for the NLR 7301 airfoil, and comparisons of the present method and experimental data are presented for all three airfoils. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation. In addition, it is shown that modeling shock-generated entropy extends the range of validity of the full potential method

    Advanced Propulsion Systems for Low-Cost Access to Space

    Get PDF
    NASA's Space Access Goal Ensure the provision of space access and improve it by increasing safety, reliability, and affordability. (1) The launch phase continues to be the highest risk period of any space mission. (2) Launch costs remain an obstacle to the complete utilization of space for research, exploration, and commercial purposes (3) Improving the Nation's access to space through the application of new technology is one of NASA's primary roles

    CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999

    Get PDF
    The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft

    Technology Requirements for the 21st Century: A NASA Perspective

    No full text
    This report provides an overview on the following:NASA Vision and Mission; Aeronautics Technology; Space Technology;and Education Programs

    Probabilistic Methods for Structural Design and Reliability

    No full text
    This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate, that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or in deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets

    Innovative Airbreathing Propulsion Concepts for Access to Space

    No full text
    This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented
    corecore