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APPLJCATlON OF A NONISENTROPIC FULL POTENTIAL METHOD TO AGAR0 STANDARD AIRFOJLS 

Abstract 

Woodrow Whitlow, Jr.' 
NASA Langley. Research Center 

Hampton, Virginia 23665-5225 

An entropy-correction method for the unsteady full 
potential equation is presented. The unsteady potential 
equation is modified to model the entropy jumps across shock 
waves. The conservative form of the modified equation is 
solved in generalized coordinates using an implicit, 
approximate factorization method. A flux-biasing 
differencing method, which generates the proper amounts of 
artificial viscosity in supersonic regions, is used to 
discretize the flow equations in space. Calculated results are 
presented for the NLR 7301, NACA 0012, and NACA 
64A010A airfoils. Comparisons of the present method and 
solutions of the Euler equations are presented for the NLR 
7301 airfoil, and comparisons of the present method and 
experimental data are presented for all three airfoils. The 
comparisons show that the present method more accurately 
models solutions of the Euler equations and experiment than 
does the isentropic potential formulation. In addition, it is 
shown that modeling shock-generated entropy extends the 
range of validity of the full potential method. 

Flomenclature 

a speedofsound 
A i  ,A2,A3 metrics of coordinate transformation, 

Equation (7) 
C airfoil chord 

pressure coefficient 
CP first harmonic of pressure coefficient 
A& 
h 
i , j  
I 
J 
k 
M 
9 
R 

first harmonic of lifting pressure 
computational time step 
indices of grid points 
identity matrix 
Jacobian of coordinate transformation 
reduced frequency based on semichord 
Mach number 
total velocity 
gas constant 

AS entropy change 
t physical time 
u,w contravariant velocities, Equation (6) 
x,z physical coordinate directions 
a angle of attack 
a0 oscillation angle 

P $7 

Y ratio of specific heats 
r change in potential across the wake 
6 difference operator 
S L  computational coordinate directions 
P 
P 
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density 

biased density 
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computational time 
velocity potential 
average of quantity across the wake 

SuDerscriDts 

isentropic 
normal to shock wave 
free stream conditions 

lower side of wake 
computational time level 
upper side of wake 
sonic conditions 
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Modern aircraft typically operate at high speeds where 
aeroelastic instabilities are more likely to occur. To 
successfully predict and analyze such aeroelastic phenomena, 
the aircraft designer needs methods that accurately predict 
the aerodynamic loads that the vehicle experiences. Since 
many critical aeroelastic phenomena occur at transonic 
speeds, methods based on linear aerodynamic theory cannot 
accurately predict these aeroelastic responses. Thus, it is 
necessary to use an aerodynamic method that can predict 
time-accurate solutions of nonlinear flows and that can 
accurately model shock waves and their unsteady motions. 

When shock waves appear in transonic flow fields, 
aerodynamic loads predicted using potential flow theory can 
be highly inaccurate and even multivalued. Multiple 
solutions of the potential equation were first observed in two 
dimensions by Steinhoff and Jameson 111. Salas and Gumbert 
121 showed that the phenomenon is not confined to a 
particular airfoil or flow condition. Williams et al. 13) 
calculated multiple solutions using two-dimensional (2-D) 
transonic small disturbance (TSD) theory, and Gibbons et at. 
[4] extended Williams' results to three dimensions and 
showed multiple TSD solutions for high-aspect-ratio wings. 
For lower-aspect-ratio wings, multiple solutions were not 
observed, but calculated lift coefficients were highly 
inaccurate when shock waves were present in the flow field. 

Since potential theory can yield inaccurate transonic 
aerodynamic loads, aeroelastic analysis performed using 
these loads has to be considered unreliable. One reason for 
this inaccuracy is that potential theory does not model the 
entropy change that a fluid particle experiences as it passes 
through shock waves. As a result, calculated shock waves can 
have the wrong strength and the wrong location. 

The most widely used methods for unsteady, nonlinear 
flow analysis are based on TSD theory [5-71. Fuglsang and 
Williams [a] modeled the effects of entropy jumps through 
shock waves in 2-D TSD theory. Gibbons et al. (41 extended 
that method to three dimensions. These efforts resulted in 



TSD methods that more dosely model solutions of the Euler 
equations than does isentropic TSD theory. 

Whitlow et al. 191 developed a full potential method for 
predicting unsteady aerodynamic loads on 2-D bodies when 
nonisentropic effects are important. The nonisentropic 
effects of embedded shock waves were modeled by modifying 
the isentropic density to include the effects of shock- 
generated entropy. This yielded potential flow solutions that 
more accurately model Euler solutions. This method is an 
extension of the Hafez-Love11 method for steady full potential 
flows [lo]. 

In the present effort, the nonisentropic full potential 
method of Whitlow et al. is implemented in a computer code 
and applied to AGARD standard airfoils for validation. A flux- 
biasing differencing method 111,121 is used to discretize the 
flow equations and to capture shock discontinuities. To 
increase computational efficiency, grids for unsteady 
calculations are generated. at each time step, using linear 
interpolation between grids calculated at extreme airfoil 
positions. The present method allows accurate predictions of 
unsteady aerodynamic loads at relatively low computational 
expense and alleviates the problem of multiple potential flow 
solutions 191. In this paper, comparisons of computed 
results with Euler calculations and with experimental data 
are presented. These comparisons show that more accurate 
modeling of flow fields is achieved with the present method 
than with an isentropic potential method. The comparisons 
also illustrate how the range of validity of potential flow 
theory is extended when the nonisentropic effects of shock 
waves are modeled. - - 

The formulation used in the present effort is that 
presented by Bridgeman et al. 1131. The flow field is 
described by the two-dimensional, unsteady full potential 
equation in conservation form 

where I$ 
determined from Bernoulli's equation 

is the velocity potential, and the density p is 

The spatial coordinates, x and z, are normalized by airfoil 
chord c, and time t is normalized by a-/c, where a- is the 
free stream speed of sound. Density is normalized by the 
free stream density p-, and I$ is normalized by a&. In (2), 
M- represents the free stream Mach number. 

In this effort, all calculations are performed in a 
coordinate system that conforms to the airfoil contour. The 
transformation to a body-fitted coordinate system is given 
by 

2 

( 3 )  

,t=t 

where 6 and f are the computational coordinate directions 
around and normal to the airfoil, as shown in fgure 1, and % 

is the computational time. The strong conservation form of 
(1) is maintained by writing the continuity equation in 
transformed coordinates as 

( 4 )  

Equation (2) transforms to 

where the contravariant velocities in the 6 and { directions, 
U and W, respectively, are given by 

The metric terms, A i ,  Ap, and A3. are related to the 
computational coordinate directions by 

A, =5:+s: 

A, = r', + r: 
The Jacobian of the transformation J is 

J = S,C, - s,r, - 
Equation (4) is solved using first order backward 

differencing in time and second order central differencing in 
space. The time derivative of density is linearized about 
previous time levels such that conservation form is 
maintained. The resulting equation is factored into the form 
4 4 ~  = F. This becomes 



where 

h2 
x [I + hW"sc - 4 GA )"S - $") p"C c 

L = [I + hW"S5 - 4 h2 (PAJSC] - 
P" 5 

( 9 )  

In (9). and 6~ represent central difference operators, the 
superscripts n. n-1, and n+l  represent computational time 
levels, 

h = A z  

The density biased in the 4 direction is denoted by p*. and F, is 
a correction to the residual due to incomplete metric 
cancellation [13,14] 

- 
The condition that the flow be tangent to the airfoil Is 

satisfied by requiring that the contravariant velocity In the { 
direction vanish at the airfoil boundary. The flow tangency 
condition is expressed 

and is applied by writing at the airfoil as 

where the subscript J represents points on the body. The 
tangency condition Implies that 

The subscript J-1/2 represents points inside the airfoil. 
Using (11) and (12), the flow tangency condition is imposed 
Implicitly on both sides of (9) by changing the 4 and 4 
operators to 

L = [I + hUn6 - 4 h 2 -  $'(A, - -1% 4 I 
A 3 6  5 e p" c 

and by representing the ti{ (pw)i,J term on the right side as 

2 (6w) i. J+ 112. 

To apply the flow tangency at the instantaneous surface 
position of moving bodies requires a new grid at each time 
step. In this effort, the computational grids were generated 
using an elliptic grid generation method [15]. Since the 
resources needed to compute the necessary grids using an 
elliptic method can exceed those necessary for the 
aerodynamic calculations, an efficient interpolation method 
is used to generate the required grids. To simulate the 
unsteady motion, gri is are calculated at the extreme airfoil 
positions, and grids for all other positions are determined 
using linear interpolation. Interior grid points are 
redistributed at each time step, while points on the outer 
boundary remain fixed. Details of this method are given in 
reference 9. 

For lifting flows, the shed vorticity is represented as a 
jump in potential across a wake line. For isentropic flows, 
the following wake boundary condition [13] is used 
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where r is the jump In potential across the wake, 0" - 01, and 
<W> is the average of W above and below the wake, 
1/2(W" + WI). The unsteady transport condition for the 
jump in potential, (13). Is obtained by assuming that the 
isentropic density and normal velocity are continuous across 
the wake. It does not model the jump in entropy across the 
wake that results when shock waves of different strengths 
are on the upper and lower surfaces. 

In the far field, the flow is set to free stream conditions 

+ = M-x 

p = l  

E h L R w M  

The spatial terms on the right side of (9) that make up 
the residual are centrally differenced about the node point 
(iJ) to give 

Q. 

The computational cell Is shown in figure 2. In supersonic 
regions, artificial viscosity, necessary to capture shocks, is 
introduced by biasing the density in the upwind direction. 
Although it is generally necessary to bias the density in both 
computational directions, in this work, biasing only in the 5 
directiot has been found to be satisfactory. The biased 
density p is defined as (for U > 0) 

where 

(P4) = P4 - P*4* 

0 

q Is the flow speed, 
and q' and p' are the 
given bv 

For steady Rows, p* and q' are constants that are computed 
once. For unsteady flows, p* and q' must be computed at 
each grid point at every time step. 

Flux biasing (a) accurately tracks sonic conditions and 
requires no empirical constants to specify the amount of 
aritifical viscosity (b) produces no velocity overshoots at 
shock waves, allowing for larger time steps--increasing 
computational efficiency--for unsteady calculations, (c) 
produces well defined, monotone shock profiles with a 
maximum two point transition between the upstream and 
downstream states, and (d) dissipates expansion shock 
waves, ruling out solutions with such nonphysical 
characteristics. 

M e w  

When a fluid particle passes through a shock wave, it 
experiences a change in entropy As which is a function of the 
upstream Mach number normal to the shodc Mn 

For unsteady flows, the shock speed must be monitored to 
obtain the Mach number relative to the shock. Here, the 
entire shock is assumed to move at the same speed as the base 
of the shock. The nonisentropic density is 

R 
P = Pie 

which substituted Into the continuity equation, (l), yields 

Details for modeling the shock-generated entropy are given 
below. Equation (4) is discretired as 
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terms in (9) as 

Downstream of shock waves, (21) becomes 

-As -As 'L z 

z 
respectively, where pi+1R,j is given by (23). The effect of 
the entropy corrections is to introduce a source distribution 
along the shock. The source strength is dependent upon As. 

The nonisentropic wake condition is determined by 
requiring that the pressure and normal velocity be 
continuous across the wake. The nonisentropic pressure 
coefficient is given by 

where AS is a function of Mq*,, 

and the zero pressure jump condition is enforced by 
requiring that 

-AS - -AS - 
R I  (Pi e IU = (Pi e 1 

This yields the following condition for the jump in the 
potential 

0 Q 1 9 *  

At shock points, 

-AS 

For flows with no shocks and hence no entropy production, 
this reduces to the isentropic wake condition (13). 

The computational cell at shock points is shown in figure 3. 

In the approximate factorization scheme, the entropy- 
correction method is implemented by representing the 

To assess the present method, pressures were calculated 
for the NLR 7301, NACA 0012, and NACA 64A01OA airfoils 
using the isentropic and nonisentropic methods. Steady 
pressures on the NLR 7301 airfoil were calculated at its 
design conditions and at a transonic high lift condition. 
Comparisons of the full potential calculations with 
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experimental data [16] and with Euler calculations are 
presented. Unsteady pressures on the NACA 0012 oscillating 
in pitch about its quarter chord were computed and 
comparisons made with experimental data [ l q .  Finally, 
calculated unsteady pressures for the NACA 64A010A 
oscillating in pitch about its quarter chord are compared 
with experimental data 11 81. The unsteady pressures were 
calculated using 600 time steps per cycle of motion. 
Modeling nonisentropic effects increases the cost of the 
computations by 35-40 percent. 

In this section, calculations made for the NLR 7301 
airfoil are presented. The full potential calculations are 
compared with Euler calculations and with experiment. 
Steady pressures on the NLR 7301 at its design conditions, 
MI = 0.721 and a - -0.19O. are shown in figure 4. Included 
are full potential calculations, Euler calculations [19] and 
experimental data. The isentropic and nonisentropic 
potential calculations are shown as one line, since, for this 
case, the effects or shock-generated entropy are small, and 
the two potential solutions are nearly identical. The results 
from the present method show very good agreement with 
experimental data and with the Euler results. The shock 
location calculated with the present method is slightly 
upstream of the experimental location and slightly 
downstream of the location predicted by the Euler solution. 

The potential flow calculations shown in figure 4 
illustrate the importance of properly constructing body- 
fitted grids for numerical calculations. Due to changes in the 
grid construction, these calculations are a significant 
improvement upon similar results presented in reference 9. 
Figure 5 shows calculated pressures for the NLR 7301 as 
presented in reference 9. The only difference in figures 4 
and 5 is the grid used in the full potential calculations. The 
trailing edge region of the original grid used for the potential 
calculations in figure 5 is shown in figure 6. Near the 
trailing edge, the grid lines in the wake are highly skewed, 
resulting in inaccurate metric coefficients. This causes the 
circulation and the calculated pressures to be in error. 
Figure 7 shows the trailing edge region of the grM used in 
the present calculations. This grid is not skewed in the 
trailing edge region, and, as a result, the calculations are 
much more accurate. 

A comparison of isentropic potential calculations and 
Euler calculations is shown in figure 8 for M.. = 0.7, a = 2". 
The shock calculated with the isentropic potential method is 
much too strong and too far aft on the airfoil, suggesting that 
this case is outside the range of validity of isentropic 
potential theory. Figure 9 shows a comparison of 
nonisentropic potential calculations with Euler calculations 
for the case of figure 8. Modeling the nonisentropic effects 
brings the potential flow solution into good agreement with 
the Euler results. The shock waves differ by 4-5 percent of 
chord in localion and have nearly the same strength. In 
addition, the agreement of the nonisentropic potential 
solution and the Euler solution is excellent on the lower 
surface of the airfoil. 

In this section, the calculations for the NACA 0012 
airfoil are presented. Isentropic and nonisentropic unsteady 

pressures are computed for the airfoil pitching about its 
quarter chord location, a( t )  = 0.016" + 2.51' sin (ks), at 
M- = 0.755 and k = 0.0814. Comparisons of the isentropic 
and nonisentropic steady solutions and comparisons of the 
first harmonic of the unsteady pressures, normalized by the 
amplitude of oscillation, with experimental data (Revnolds 
number I 5.5 x 106) are presented. Fourier analysis of the 
time-dependent data presented in reference 16 is used to 
obtain the first harmonics of the experimental pressures. 
First harmonics of the calculated pressures are obtained by 
calculating the flow field for four cycles of the unsteady 
motion and performing Fourier analysis of the data for the 
last cycle of motion. 

Calculated isentropic and nonisentropic steady pressures 
are shown in figure 10. For this case, the solution contains 
a weak shock, and the effects of the entropy corrections on 
the steady solution are minimal. Comparisons of the mean 
pressures over a cycle of motion are shown in figure 11. 
Figure l l ( a )  shows the pressures on the airfoil upper 
surface, and those on the lower surface are shown in figure 
l l ( b ) .  For both surfaces, agreement between the 
calculations and experiment is very good. Modeling the 
shock-generated entropy causes a slight forward shift in the 
mean shock position, and downstream of the shock wave, the 
level of the pressures is changed to be in better agreement 
with the measured data. 

Comparisons of the first harmonic of unsteady pressures 
are shown in figure 12. Pressures on the upper surface are 
shown in figure 12(a). The real part of the calculations 
show good agreement with experiment, with the imaginary 
component of the pressures indicating a calculated shock 
wave that is stronger than and aft of the measured shock. 
This can be expected for comparisons of inviscid calculations 
with data measured at a relatively low Reynolds number. 
The TSD calculations, coupled with a viscous boundary layer 
model, presented by Howlett and Bland [20] indicate that 
viscous effects are significant for this case. The 
nonisentropic calculations show a slight weakening and 
forward shift of the shock wave toward the measured 
location. Figure 12(b) shows the pressures on the lower 
surface. The real part of the calculated solutions shows very 
good agreement with the measured data, while the imaginary 
part indicates a shock that is too strong and aft of the 
measured location. The real part of the nonisentropic 
calculations indicate weakening of the shock wave and an 
upstream shift in its location, whereas the imaginary 
component shows minimal effects on the shock strength and 
location. - 

In this section, calculations for the NACA 64A010A 
airfoil are presented. The airfoil is the model of the NACA 
64A010 airfoil tested at the NASA Ames Research Center 
118). That model has a small amount of camber and surface 
waviness. The comparisons presented here are for test 
conditions at M, I 0.796 and Reynolds number of 

12.5 x 106. 

Figure 13 shows the measured and calculated steady 
pressures on the airfoil surface. The surface waviness is 
evident in the pressure distributions upstream of the airfoil 
midchord. Agreement between the calculations and 
experiment is good, with the level of the calculated 
pressures upstream of the shock slightly higher than those 
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measured during the experiment. On the forward portion of 
the airfoil, the isentropic and nonisentropic pressures are 
nearly the same, and no differences in the plotted pressures 
are evident. The calculated shodc wave is 2-3 percent of 
chord downstream of the measured location. It Is of moderate 
strength, and the effects of the nonisentropic corrections is 
to cause a slight weakening and forward shift of the shock. 
The differences between the measured and calculated 
pressures are as expected for comparison of an Inviscid 
method with experimental data. TSD calculations shown in 
reference [20] Indicate that modeling viscous effects would 
improve the comparisons with experiment. 

Unsteady pressures were calculated for the airfoil 
oscillating in pitch about its quarter chord, 
a( r )  = a0 sin (kr). Figure 14 shows the first harmonic of 
the unsteady pressures for a0 = 1.02", k = 0.051. Except in 
the vicinity of the shock wave, the agreement between 
calculations and experiment is good, with the better 
agreement shown with the imaginary component of the 
pressures. The calculated shock wave is downstream of the 
experimental location and is stronger than the measured 
shock. For this case. the aeneral effect of the entroDv 

airfoils indicate that for shock waves of weak to moderate 
strength, modeling the nonisentropic effects has small 
effects on the steady state pressures--slight weakening and 
forward shift of the computed shock wave. For the NACA 
001 2 airfoil, modeling the nonisentropic effects cause 
weakening of and a small forward shift in the shock pulse. 
Calculations on the NACA 64A010A show that modeling the 
unsteady shock-generated entropy causes a forward shift in 
the location of the shock pulse, but for some cases, the 
amplitude of the pulse is increased. In those cases, 
agreement with experimental data is improved. The 
calculations for the NACA 64A010A show that although the 
nonisentropic effects on the steady solution are small, the 
effects on the unsteady solution can be significant. 

A strong shock case for the NLR 7301 shows that 
modeling nonisentropic effects can extend the range of 
validity of potential flow methods. Accurate solutions can be 
obtained at conditions for which isentropic potential yields 
highly inaccurate solutions. 
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Figure 1. Generalized coordinate system. 

Figure 3. Computational cell at shock points. 
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Figure 4. Steady pressures on NLR 7301 airfoil calculated 
using current grid, M.. = 0.721, a - -0.19". 
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Figure 5. Steady pressures on NLR 7301 airfoil calculated 
using original grid, Mo. = 0.721, a = -0.19". 

Figure 6. Original grid in trailing edge region of NLR 
7301 airfoil [9]. 

Figure 7. Current grid in trailing edge region of NLR 
7301 airfoil. 
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Figure 8. Isentropic potential and Euler calculated steady 
pressures on NLR 7301 airfoil, MI = 0.7, 
a = 2". 
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Figure 9. Nonisentropic potential and Euler calculated 
steady pressures on NLR 7301 airfoil, 
MI = 0.7. a = 2". 
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Figure 10. Steady pressures on NACA 0012 airfoil, M, - 
0.755, a = 0.016". 
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Figure 12. Unsteady pressures on NACA 0012 airfoil, M, 
= 0.755, a - 0.016" + 2.51" sin (kr) ,  
k - 0.0814. 

Figure 11. Mean pressures on NACA 0012 airfoil, M, = 

0.755, a = 0.016" + 2.51" sin (k r ) ,  
k - 0.0814. 
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Figure 13. Steady pressures on NACA 64A010A, M.. = 
0.796. a - 0". 
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Figure 14. Unsteady pressures on NACA 64A01OA airfoil, 
MI I 0.796, a = 1.02" sin (kr), k = 0.051. 

Figure 14. C o w .  
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Figure 15. Unsteady pressures on NACA 64A010A airfoil, 
MI I 0.796, a = 1.02' sin (kr), k = 0.101. 
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Figure 15. conduded. 
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Figure 16. Unsteady pressures on NACA 64A010A airfoil, 
MI = 0.796, a I 2' sin (kT), k I 0.101. 
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