14,337 research outputs found
Tree-level electron-photon interactions in graphene
Graphene's low-energy electronic excitations obey a 2+1 dimensional Dirac
Hamiltonian. After extending this Hamiltonian to include interactions with a
quantized electromagnetic field, we calculate the amplitude associated with the
simplest, tree-level Feynman diagram: the vertex connecting a photon with two
electrons. This amplitude leads to analytic expressions for the 3D angular
dependence of photon emission, the photon-mediated electron-hole recombination
rate, and corrections to graphene's opacity and dynamic
conductivity for situations away from thermal equilibrium, as
would occur in a graphene laser. We find that Ohmic dissipation in perfect
graphene can be attributed to spontaneous emission.Comment: 5 pages, 3 figure
Near-field spectroscopy of bimodal size distribution of InAs/AlGaAs quantum dots
We report on high-resolution photoluminescence (PL) spectroscopy of spatial
structure of InAs/AlGaAs quantum dots (QDs) by using a near-field scanning
optical microscope (NSOM). The double-peaked distribution of PL spectra is
clearly observed, which is associated with the bimodal size distribution of
single QDs. In particular, the size difference of single QDs, represented by
the doublet spectral distribution, can be directly observed by the NSOM images
of PL.Comment: 3pages, 3figue
Scattering of Pruppacher-Pitter raindrops at 30 GHz
Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated
Modeling of resistive sheets in finite element solutions
A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by a metal-backed cavity loaded with a resistive card
Modeling reverberation mapping data II: dynamical modeling of the Lick AGN Monitoring Project 2008 dataset
We present dynamical modeling of the broad line region (BLR) for a sample of
five Seyfert 1 galaxies using reverberation mapping data taken by the Lick AGN
Monitoring Project in 2008. By modeling the AGN continuum light curve and
H line profiles directly we are able to constrain the geometry and
kinematics of the BLR and make a measurement of the black hole mass that does
not depend upon the virial factor, , needed in traditional reverberation
mapping analysis. We find that the geometry of the BLR is generally a thick
disk viewed close to face-on. While the H emission is found to come
preferentially from the far side of the BLR, the mean size of the BLR is
consistent with the lags measured with cross-correlation analysis. The BLR
kinematics are found to be consistent with either inflowing motions or
elliptical orbits, often with some combination of the two. We measure black
hole masses of for Arp
151, for Mrk 1310, for NGC 5548,
for NGC 6814, and for SBS
1116+583A. The factors measured individually for each AGN are found to
correlate with inclination angle, although not with , ,
or FWHM/ of the emission line profile.Comment: 21 pages, 24 figures, 3 tables, Accepted for publication in MNRAS,
corrected masses for NGC 5548 and NGC 6814 in the abstrac
Electromagnetic characterization of conformal antennas
The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations
Scaling laws for the photo-ionisation cross section of two-electron atoms
The cross sections for single-electron photo-ionisation in two-electron atoms
show fluctuations which decrease in amplitude when approaching the
double-ionisation threshold. Based on semiclassical closed orbit theory, we
show that the algebraic decay of the fluctuations can be characterised in terms
of a threshold law as with exponent
obtained as a combination of stability exponents of the triple-collision
singularity. It differs from Wannier's exponent dominating double ionisation
processes. The details of the fluctuations are linked to a set of infinitely
unstable classical orbits starting and ending in the non-regularisable triple
collision. The findings are compared with quantum calculations for a model
system, namely collinear helium.Comment: 4 pages, 1 figur
Chemical Abundance Study of One Red Giant Star in NGC 5694 : A Globular Cluster with Dwarf Spheroidals' Chemical Signature?
We report the abundance analysis of one red giant branch star in the
metal-poor outer halo globular cluster NGC 5694. We obtain [Fe/H] = -1.93,
based on the ionized lines, and our metallicity measurement is in good
agreement with previous estimates. We find that [Ca+Ti/2Fe] and [Cu/Fe] of NGC
5694 are about 0.3 -- 0.4 dex lower than other globular clusters with similar
metallicities, but similar to some LMC clusters and stars in some dwarf
spheroidal galaxies. Differences persist, however, in the abundances of neutron
capture elements. The unique chemical abundance pattern and the large
Galactocentric distance (30 kpc) and radial velocity (-138.6 +/- 1.0 km/sec)
indicate that NGC 5694 had an extragalactic origin.Comment: ApJL accepte
- …