62,769 research outputs found

    Quasiparticle Berry curvature and Chern numbers in spin-orbit coupled bosonic Mott insulators

    Full text link
    We study the ground-state topology and quasiparticle properties in bosonic Mott insulators with two- dimensional spin-orbit couplings in cold atomic optical lattices. We show that the many-body Chern and spin-Chern number can be expressed as an integral of the quasihole Berry curvatures over the Brillouin zone. Using a strong-coupling perturbation theory, for an experimentally feasible spin-orbit coupling, we compute the Berry curvature and the spin Chern number and find that these quantities can be generated purely by interactions. We also compute the quasiparticle dispersions, spectral weights, and the quasimomentum space distribution of particle and spin density, which can be accessed in cold-atom experiments and used to deduce the Berry curvature and Chern numbers

    A Modified "Bottom-up" Thermalization in Heavy Ion Collisions

    Full text link
    In the initial stage of the bottom-up picture of thermalization in heavy ion collisions, the gluon distribution is highly anisotropic which can give rise to plasma instability. This has not been taken account in the original paper. It is shown that in the presence of instability there are scaling solutions, which depend on one parameter, that match smoothly onto the late stage of bottom-up when thermalization takes place.Comment: 8 pages and 1 embedded figure, talk presented at the Workshop on "Quark-Gluon Plasma Thermalization", Vienna, Austria, 10-12 August 200

    Electronic visualization of gas bearing behavior

    Get PDF
    Visualization technique produces a visual simulation of gas bearing operation by electronically combining the outputs from the clearance probes used to monitor bearing component motion. Computerized recordings of the probes output are processed, displayed on an oscilloscope screen and recorded with a high-speed motion picture camera

    Spin-Seebeck effect in a strongly interacting Fermi gas

    Full text link
    We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering
    • …
    corecore