60 research outputs found
The ARTS web server for aligning RNA tertiary structures
RNA molecules with common structural features may share similar functional properties. Structural comparison of RNAs and detection of common substructures is, thus, a highly important task. Nevertheless, the current available tools in the RNA community provide only a partial solution, since they either work at the 2D level or are suitable for detecting predefined or local contiguous tertiary motifs only. Here, we describe a web server built around ARTS, a method for aligning tertiary structures of nucleic acids (both RNA and DNA). ARTS receives a pair of 3D nucleic acid structures and searches for a priori unknown common substructures. The search is truly 3D and irrespective of the order of the nucleotides on the chain. The identified common substructures can be large global folds with hundreds and even thousands of nucleotides as well as small local motifs with at least two successive base pairs. The method is highly efficient and has been used to conduct an all-against-all comparison of all the RNA structures in the Protein Data Bank. The web server together with a software package for download are freely accessible at
SiteEngines: recognition and comparison of binding sites and proteināprotein interfaces
Protein surface regions with similar physicochemical properties and shapes may perform similar functions and bind similar binding partners. Here we present two web servers and software packages for recognition of the similarity of binding sites and interfaces. Both methods recognize local geometrical and physicochemical similarity, which can be present even in the absence of overall sequence or fold similarity. The first method, SiteEngine (), receives as an input two protein structures and searches the complete surface of one protein for regions similar to the binding site of the other. The second, Interface-to-Interface (I2I)-SiteEngine (), compares proteināprotein interfaces, which are regions of interaction between two protein molecules. It receives as an input two structures of proteināprotein complexes, extracts the interfaces and finds the three-dimensional transformation that maximizes the similarity between two pairs of interacting binding sites. The output of both servers consists of a superimposition in PDB file format and a list of physicochemical properties shared by the compared entities. The methods are highly efficient and the freely available software packages are suitable for large-scale database searches of the entire PDB
RsiteDB: a database of protein binding pockets that interact with RNA nucleotide bases
We present a new database and an on-line search engine, which store and query the protein binding pockets that interact with single-stranded RNA nucleotide bases. The database consists of a classification of binding sites derived from proteināRNA complexes. Each binding site is assigned to a cluster of similar binding sites in other proteināRNA complexes. Cluster members share similar spatial arrangements of physicoāchemical properties, thus can reveal novel similarity between proteins and RNAs with different sequences and folds. The clusters provide 3D consensus binding patterns important for proteinānucleotide recognition. The database search engine allows two types of useful queries: first, given a PDB code of a proteināRNA complex, RsiteDB can detail and classify the properties of the protein binding pockets accommodating extruded RNA nucleotides not involved in local RNA base pairing. Second, given an unbound protein structure, RsiteDB can perform an on-line structural search against the constructed database of 3D consensus binding patterns. Regions similar to known patterns are predicted to serve as binding sites. Alignment of the query to these patterns with their corresponding RNA nucleotides allows making unique predictions of the proteināRNA interactions at the atomic level of detail. This database is accessable at http://bioinfo3d.cs.tau.ac.il/RsiteDB
PatchDock and SymmDock: servers for rigid and symmetric docking
Here, we describe two freely available web servers for molecular docking. The PatchDock method performs structure prediction of proteināprotein and proteināsmall molecule complexes. The SymmDock method predicts the structure of a homomultimer with cyclic symmetry given the structure of the monomeric unit. The inputs to the servers are either protein PDB codes or uploaded protein structures. The services are available at . The methods behind the servers are very efficient, allowing large-scale docking experiments
MolAxis: a server for identification of channels in macromolecules
MolAxis is a freely available, easy-to-use web server for identification of channels that connect buried cavities to the outside of macromolecules and for transmembrane (TM) channels in proteins. Biological channels are essential for physiological processes such as electrolyte and metabolite transport across membranes and enzyme catalysis, and can play a role in substrate specificity. Motivated by the importance of channel identification in macromolecules, we developed the MolAxis server. MolAxis implements state-of-the-art, accurate computational-geometry techniques that reduce the dimensions of the channel finding problem, rendering the algorithm extremely efficient. Given a protein or nucleic acid structure in the PDB format, the server outputs all possible channels that connect buried cavities to the outside of the protein or points to the main channel in TM proteins. For each channel, the gating residues and the narrowest radius termed ābottleneckā are also given along with a full list of the lining residues and the channel surface in a 3D graphical representation. The users can manipulate advanced parameters and direct the channel search according to their needs. MolAxis is available as a web server or as a stand-alone program at http://bioinfo3d.cs.tau.ac.il/MolAxis
MolAxis: a server for identification of channels in macromolecules
MolAxis is a freely available, easy-to-use web server for identification of channels that connect buried cavities to the outside of macromolecules and for transmembrane (TM) channels in proteins. Biological channels are essential for physiological processes such as electrolyte and metabolite transport across membranes and enzyme catalysis, and can play a role in substrate specificity. Motivated by the importance of channel identification in macromolecules, we developed the MolAxis server. MolAxis implements state-of-the-art, accurate computational-geometry techniques that reduce the dimensions of the channel finding problem, rendering the algorithm extremely efficient. Given a protein or nucleic acid structure in the PDB format, the server outputs all possible channels that connect buried cavities to the outside of the protein or points to the main channel in TM proteins. For each channel, the gating residues and the narrowest radius termed ābottleneckā are also given along with a full list of the lining residues and the channel surface in a 3D graphical representation. The users can manipulate advanced parameters and direct the channel search according to their needs. MolAxis is available as a web server or as a stand-alone program at http://bioinfo3d.cs.tau.ac.il/MolAxis
Discriminating physiological from non-physiological interfaces in structures of protein complexes: A community-wide study
Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy
- ā¦