152 research outputs found

    Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands

    Get PDF
    In this study, we report a ligand-guided homology modeling approach allowing the analysis of relevant binding site residue conformations and the identification of two novel histamine H3 receptor ligands with binding affinity in the nanomolar range. The newly developed method is based on exploiting an essential charge interaction characteristic for aminergic G-protein coupled receptors for ranking 3D receptor models appropriate for the discovery of novel compounds through virtual screening

    PyRod Enables Rational Homology Model‐based Virtual Screening Against MCHR1

    Get PDF
    Several encouraging pre‐clinical results highlight the melanin‐concentrating hormone receptor 1 (MCHR1) as promising target for anti‐obesity drug development. Currently however, experimentally resolved structures of MCHR1 are not available, which complicates rational drug design campaigns. In this study, we aimed at developing accurate, homologymodel‐based 3D pharmacophores against MCHR1. We show that traditional approaches involving docking of known active small molecules are hindered by the flexibility of binding pocket residues. Instead, we derived three‐dimensional pharmacophores from molecular dynamics simulations by employing our novel open‐source software PyRod. In a retrospective evaluation, the generated 3D pharmacophores were highly predictive returning up to 35 % of active molecules and showing an early enrichment (EF1) of up to 27.6. Furthermore, PyRod pharmacophores demonstrate higher sensitivity than ligand‐based pharmacophores and deliver structural insights, which are key to rational lead optimization

    Solving an Old Puzzle: Elucidation and Evaluation of the Binding Mode of Salvinorin A at the Kappa Opioid Receptor

    Get PDF
    The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA’s suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA’s binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed

    HuskinDB, a database for skin permeation of xenobiotics

    Get PDF
    Skin permeation is an essential biological property of small organic compounds our body is exposed to, such as drugs in topic formulations, cosmetics, and environmental toxins. Despite the limited availability of experimental data, there is a lack of systematic analysis and structure. We present a novel resource on skin permeation data that collects all measurements available in the literature and systematically structures experimental conditions. Besides the skin permeation value kp, it includes experimental protocols such as skin source site, skin layer used, preparation technique, storage conditions, as well as test conditions such as temperature, pH as well as the type of donor and acceptor solution. It is important to include these parameters in the assessment of the skin permeation data. In addition, we provide an analysis of physicochemical properties and chemical space coverage, laying the basis for applicability domain determination of insights drawn from the collected data points. The database is freely accessible under https://huskindb.drug-design.de or https://doi.org/10.7303/syn21998881

    Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the ¾-, δ-, κ-Opioid and Nociceptin Receptors

    Get PDF
    Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual Ο-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic

    Structural determinants of sphingosine-1-phosphate receptor selectivity

    Get PDF
    Fingolimod, the prodrug of fingolimod-1-phosphate (F1P), was the first sphingosine-1-phosphate receptor (S1PR) modulator approved for multiple sclerosis. F1P unselectively targets all five S1PR subtypes. While agonism (functional antagonism via receptor internalization) at S1PR1 leads to the desired immune modulatory effects, agonism at S1PR3 is associated with cardiac adverse effects. This motivated the development of S1PR3-sparing compounds and led to a second generation of S1PR1,5-selective ligands like siponimod and ozanimod. Our method combines molecular dynamics simulations and three-dimensional pharmacophores (dynophores) and enables the elucidation of S1PR subtype-specific binding site characteristics, visualizing also subtle differences in receptor–ligand interactions. F1P and the endogenous ligand sphingosine-1-phosphate bind to the orthosteric pocket of all S1PRs, but show different binding mode dynamics, uncovering potential starting points for the development of subtype-specific ligands. Our study contributes to the mechanistic understanding of the selectivity profile of approved drugs like ozanimod and siponimod and pharmaceutical tool compounds like CYM5541

    Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1]DALDA, and KGOP01, Binding to the Mu Opioid Receptor

    Get PDF
    The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure–activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2′,6′-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand–MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics

    Biased Ligands Differentially Shape the Conformation of the Extracellular Loop Region in 5-HT2B Receptors

    Get PDF
    G protein-coupled receptors are linked to various intracellular transducers, each pathway associated with different physiological effects. Biased ligands, capable of activating one pathway over another, are gaining attention for their therapeutic potential, as they could selectively activate beneficial pathways whilst avoiding those responsible for adverse effects. We performed molecular dynamics simulations with known β-arrestin-biased ligands like lysergic acid diethylamide and ergotamine in complex with the 5-HT2B receptor and discovered that the extent of ligand bias is directly connected with the degree of closure of the extracellular loop region. Given a loose allosteric coupling of extracellular and intracellular receptor regions, we delineate a concept for biased signaling at serotonin receptors, by which conformational interference with binding pocket closure restricts the signaling repertoire of the receptor. Molecular docking studies of biased ligands gathered from the BiasDB demonstrate that larger ligands only show plausible docking poses in the ergotamine-bound structure, highlighting the conformational constraints associated with bias. This emphasizes the importance of selecting the appropriate receptor conformation on which to base virtual screening workflows in structure-based drug design of biased ligands. As this mechanism of ligand bias has also been observed for muscarinic receptors, our studies provide a general mechanism of signaling bias transferable between aminergic receptors
    • …
    corecore