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Abstract

In this study, we report a ligand-guided homology modeling approach allowing the analysis

of relevant binding site residue conformations and the identification of two novel histamine

H3 receptor ligands with binding affinity in the nanomolar range. The newly developed

method is based on exploiting an essential charge interaction characteristic for aminergic G-

protein coupled receptors for ranking 3D receptor models appropriate for the discovery of

novel compounds through virtual screening.

Introduction

Virtual screening campaigns are typically classified into ligand-based approaches exploiting

the similarity of molecules to already known active ligands, and structure-based approaches,

where virtual screening models describe three-dimensional chemical interactions between

molecules and the target structure [1]. A literature survey revealed that structure-based

approaches are on average less successful in identifying highly active hits than ligand-based

approaches [2]. However, if active lead compounds are identified, structure-based approaches

hold the information for a subsequent rational optimization of interactions between ligand

and target structure.

Although the amount of publicly available data for ligand-protein complexes is constantly

increasing, structural data is not always available. In this situation researchers often rely on

homology modeling, a method for generating the protein structure of interest based on closely

related proteins with resolved crystal structures [3]. Including ligand information can aid the

homology modeling process and decrease the level of uncertainty by evaluating homology

models to enrich known actives from decoys in docking experiments and/or to allow docking

poses that match data from mutational studies (often termed ‘ligand-based’, ‘ligand-guided’,

‘ligand-steered’ or ‘ligand-supported homology modeling’). Especially G-protein coupled

receptors (GPCRs) were extensively studied using such approaches including serotonin recep-

tors [4], dopamine receptors [5], GABAB receptor [6] and neurokinin receptor 1 [7].
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Most of these approaches heavily depend on scoring algorithms employed by docking pro-

grams to rank ligand poses and to estimate binding affinity [4–6]. However, docking scores

often poorly corelate with binding affinity [8]. Also, searching for or optimizing a single

homology model to bind a diverse set of ligands is arguable, since very different ligands might

bind to or induce different protein conformations [9]. In contrast, Evers and Klebe avoided

the use of docking scores by optimizing a homology model of the neurokinin receptor 1 to

allow interactions with a single ligand that was extensively investigated including structure

activity relationship of the ligand and mutational studies of the receptor to identify interacting

amino acid chains [7]. Though, relying on mutational data can also be misleading, since muta-

tions distant from the protein binding pocket can also drastically affect ligand binding [10].

In this study, we were interested if a single, yet important and reliable interaction can be

exploited in a ligand-guided homology modeling workflow for the histamine H3 receptor

(H3R) to gain structural knowledge about the binding site and to guide the selection of a

homology model for subsequent virtual screening. We focused on an interaction of charged

functional groups between ligands and aminergic GPCRs, which is well characterized and has

been observed in multiple crystal structures of different GPCRs [11,12]. H3R was selected as

target for several reasons: (i) ligand data is publicly available, (ii) crystal structure is currently

still missing, (iii) H3R is an important drug target discussed for many severe diseases including

Alzheimer’s disease, schizophrenia, Parkinson’s disease, narcolepsy, pain, and obesity among

others [13,14] and (iv) a recent study of us revealed that H3R and melanin-concentrating hor-

mone receptor 1 can be inhibited by the same ligand which could be potentially used in obesity

treatment [15]. In this project, 1000 homology models were generated and evaluated for allow-

ing a charged interaction with a defined set of ligands. Best and worst performing models were

structurally investigated and revealed the importance of distinct binding site residue confor-

mations for proper ligand docking. The highest ranked model was used for a pharmacophore-

based virtual screening campaign and led to the identification of two novel H3R ligands with

nanomolar affinity.

Results and discussion

Ligand-guided homology modeling

A template search revealed that the crystal structure of H1R (3RZE [16]) does not show the

highest sequence similarity to H3R. Also, the extracellular loop 2 close to the orthosteric bind-

ing pocket is not resolved in the H1R structure. Hence, homology modeling was performed

with a multiple-template approach employing crystal structures of H1R, muscarinic M2 recep-

tor (M2R) and muscarinic M3 (M3R) receptor to generate 1000 homology models of H3R with

MODELLER 9.15 [17]. The average heavy atom RMSD of 1.2 Å was calculated with VMD

1.9.2 [18], whereat side chain heavy atoms were more flexible (1.6 Å) than backbone heavy

atoms (0.4 Å). A set of 9 antagonists [19] (Table C in S1 File) was chosen to guide the selection

of a homology model for later pharmacophore studies. We were specifically interested into

this ligand series, since we found highly similar molecules active against the melanin-concen-

trating hormone receptor 1 (MCHR1) and dual antagonism of H3R and MCHR1 might pres-

ent a potential treatment option for obesity [15]. Additionally, these ligands are rather big

showing Y-shaped conformations and thus should allow the selection of a homology model

with an open binding pocket able to harbor diverse ligands. Subsequently, models were scored

for presence of a charged interaction between the docked ligands and D3.32 (numbering from

Ballesteros-Weinstein numbering scheme [20]), that is known to be essential for ligand bind-

ing to aminergic GPCRs (Fig 1A) [11]. Docking and scoring have been performed twice to

control for variations introduced by the docking algorithm (Fig B in S1 File). The highest
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ranked model achieved an average score of 0.835 in both docking experiments. This means

that 83.5% of the docking poses allow for a charged interaction with D3.32. The predominant

binding mode of docked ligands involves a charged interaction with D3.32, hydrogen bonds

with D3.32, Y3.33, E5.46 and Y6.51 as well as several hydrophobic contacts (Fig 1B). Interestingly,

we found that 25% of generated models retrieved a score of 0.1 or lower. From these, 7 models

had a score of 0, which means that none of the docking poses was involved in the essential

charged interaction.

Thus, we got interested what determinants could be used to distinguish highly scored mod-

els from poorly scored models. First, 10 best and 10 worst performing models were tested for

geometric errors like phi-psi outliers and heavy atom clashes in MOE 2015 [24] as well as with

homology modeling evaluation programs including VERIFY 3D [25], ERRAT [26] and

PROVE [27]. However, none of the applied methods led to a successful discrimination (Fig C

in S1 File). Next, we analyzed structural differences by comparing the side chain atoms average

position of 10 best and 10 worst performing models (Fig 2). The atom with the highest differ-

ence (4.7 Å) in the average position is a carboxyl oxygen of E5.46 (Fig 2A). In the highly scored

models E5.46 is pointing inside the binding pocket (Fig 2B). This is in line with the predomi-

nant docking pose that is involved in a hydrogen bond with E5.46. In contrast, poorly scored

models show a conformation pointing outside the binding pocket. This conformation is also

energetically unfavorable, since it is pointing toward the lipophilic membrane and no amino

acid with opposite charge is present to compensate the negative charge. The importance of

E5.46 in ligand binding is in agreement with mutational studies [28] and was already described

in previous homology modeling studies for H3R [29,30]. Another atom with a rather high

Fig 1. Ligand-guided homology modeling workflow exploits essential charged interaction known from aminergic GPCRs. (A) Aminergic GPCRs show a common

charge interaction of highly diverse ligands with Aspartate 3.22 as illustrated for Eticlopride co-crystallized with the dopamine D3 receptor (3PBL [21]), Tiotropium co-

crystallized with the muscarinic M4 receptor (5DSG [22]) and Carazolol co-crystallized with the β2 adrenoceptor (5JQH [23]). (B) Predominant binding mode of ligand

series (Table C in S1 File) used for ligand-guided homology modeling. The depicted docking pose of CHEMBL1091834 involves a charged interaction with D3.32¸

hydrogen bonds to D3.32, Y3.33, E5.46 and Y6.51 as well as several hydrophobic contacts. Red arrows–hydrogen bond acceptors, green arrows–hydrogen bond donors, blue

star–positive ionizable, yellow sphere–hydrophobic contact.

https://doi.org/10.1371/journal.pone.0218820.g001
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difference in mean atom position (2.1 Å) is a distal side chain carbon of L7.42. However, we

were not able to draw a clear connection to the docking results.

Virtual screening

The highest scored homology model was used for a screening campaign to identify novel H3R

ligands. 10 diverse antagonists (Table A in S1 File) were docked into the homology model.

Constraints were added to focus on docking poses involved in interactions with the negatively

charged carboxyl-group of D3.32 and E5.46, since all inverse agonists contain at least one posi-

tively charged group. Docking poses with favorable interaction patterns were found for only 5

out of 10 compounds and additionally analyzed to agree with published structure activity rela-

tionship. Derivatives of CHEMBL1923737 (Fig 3, model A) tolerate differently sized pyridone

analogues indicating a location of the pyridone group outside the relatively narrow orthosteric

binding pocket [31]. The literature about CHEMBL2151197 (Fig 3, model B) has only sparse

structure active relationship data [32]. However, later pharmacophore modeling motivated us

to include this docking pose in virtual screening. Analogues of CHEMBL2387294 show that 1

positively charged group can be exchanged by hydrophobic groups without loss of activity

[33]. Hence, a docking pose was chosen that is extending outside the receptor with more space

for different interactions (Fig 3, model C). Data for CHEMBL1269844 report a decrease in

activity when attaching the naphthalene moiety in an extending fashion [34]. Concordantly,

such molecule would lead to clashes with the receptor in the selected binding mode (Fig D

part A in S1 File). The preferred docking pose of the histamine analogue CHEMBL214312 (Fig

D part B in S1 File) is complexed between D3.32 and E5.46 [35]. This binding mode agrees well

with several previous docking studies of histamine [29,30]. Each of the 5 chosen binding poses

is involved in an interaction with charged residues D3.32 and E5.46, which is agreement with the

common binding mode of aminergic GPCRs involving D3.32 and with the importance of E5.46

Fig 2. Best and worst scored homology models show distinct structural differences. Top view onto the orthosteric binding pocket of H3R. Extracellular loop 2 is

not shown for sake of clarity. (A) Structural differences were analyzed by calculating the difference in average side chain atom position of 10 highest and 10 lowest

ranked models. Blue color indicates low difference, yellow high difference. (B) Sidechain conformations of 10 highest and 10 lowest ranked homology models.

Yellow–high ranked models, blue–low ranked models.

https://doi.org/10.1371/journal.pone.0218820.g002
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for proper ligand placement in our homology modeling approach (Fig 2) that is further sup-

ported by mutational data [28] and previous docking studies [29,30]. Docking poses of

CHEMBL1923737, CHEMBL2151197 (Fig 3, model A and B) and CHEMBL1269844 (Fig D

part A in S1 File) only interact with D3.32 despite the already described importance of E5.46 in

ligand binding. However, CHEMBL1923737 has only a single moiety able to act as hydrogen

bond donor. Thus, it can only interact with one of such residues. Additionally, mutational data

from the histamine H1 receptor suggests that the amino acid at position 5.46 is only important

for some ligands [36,37]. Selected complexes were minimized using SZYBKI [38] to allow

binding site adaptation to the docked ligand. Pharmacophores were created and iteratively

optimized using actives and property-matched decoys generated with DUD-E [39]. Three

pharmacophores were found to efficiently discriminate between actives and decoys (Fig 3, Fig

E in S1 File). Only pharmacophore model C includes interactions with residue E5.46, whose

conformation was found to be important for proper ligand docking in prior homology model-

ing selection. However, the 10 diverse inverse agonists used for this docking differ significantly

from the shape of the Y-shaped compounds employed in ligand-guided homology modeling.

Thus, it is not surprising that binding modes and interaction partners are to some extent

different.

Fig 3. Virtual screening workflow results in 8 compounds out of 1.4 M for in-vitro validation. Workflow for virtual screening using 3 different pharmacophores

based on docking poses of CHEMBL1923737 (model A), CHEMBL2151197 (model B) and CHEMBL2387294 (model C). Model A led to identification of

compounds 3, 5, 6, 8, 9, model B to compounds 4, 7 and model C to compounds 1, 2, 10 (Fig 4, Table E in S1 File). � compounds 9 and 10 (model A and C) were

removed from experimental testing due to insufficient purity as determined by LC-MS. Red arrows–hydrogen bond acceptors, green arrows–hydrogen bond

donors, blue star–positive ionizable, yellow sphere–hydrophobic contact.

https://doi.org/10.1371/journal.pone.0218820.g003
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These pharmacophore models were used to screen a library of 1.4 M commercially available

compounds (Enamine Ltd., Kyiv, Ukraine, www.enamine.net) resulting in almost 16,000 hits.

The hits were docked into the respective minimized homology model and resulting docking

poses were assessed for matching the previously screened pharmacophores. This procedure

yielded 73 hits, which were visually inspected to identify hits complementing the receptor

binding pocket surface. To broaden the chemical space of H3R ligands, hits were also priori-

tized to cover positive ionizable head groups that are underrepresented or completely absent

in the H3R ligand data of the CHEMBL 20 database [40], i.e. terminal guanidino, 2,2,6,6-tetra-

methylpiperidino and secondary amino group (Fig 4). In total, 10 compounds were purchased

for in-vitro testing. However, two compounds had to be excluded due to insufficient purity as

determined by LC-MS (Table E in S1 File).

Two molecules (5 and 6) were found to bind H3R in nanomolar concentration ranges (Fig

5). The identified binding mode indicates very similar interaction patterns including a charged

interaction to D3.32, hydrogen bonds to D3.32 and Y3.33 as well as several hydrophobic contacts.

Moreover, we observed pi-cation interactions to D3.32 and Y3.33. Compound 6 shows an addi-

tional pi-cation interaction to F7.39 which may contribute to its superior activity towards H3R

compared to compound 5. Closest H3R ligand analogues in CHEMBL 24 [40] were identified

by employing Morgan fingerprints [41] implemented in RDKit [42] nodes for KNIME [43]

with a Tanimoto score of 0.53 for compound 5 and of 0.36 for compound 6 (Fig 4). The closest

analogues were characterized as inverse agonists indicating the same mode of action for the

newly identified compounds 5 and 6 [44,45]. According to Morgan fingerprints [41] both

compounds significantly differ from CHEMBL1923737 whose docking pose was used for

pharmacophore modeling (Table D in S1 File). This is in line with frequently observed scaffold

hopping in pharmacophore screening campaigns [46]. The thiazole motif of compound 5 has

recently also been incorporated in new lead findings for this receptor subtype [47]. Compound

6 is known as CHEMBL1433079 and was tested in different high throughput bioassays. How-

ever, none of the reported primary screen activities was further investigated hindering a proper

assessment of the data.

The remaining compounds bound H3R at a concentration of 10 μM less than 50% and were

not considered for in-depth activity characterization (Fig 4). Compounds 1–4 and 7 represent

a molecule class that does not carry a lipophilic moiety (e.g. ethyl, cyclopropyl) at the charged

head group like in compound 5 and 6 indicating an important role of this structural feature.

Compound 8 does carry such hydrophobic moiety at the positively charged amine but was

also found to be inactive. Hence, we speculate that the methyl group might be too small to

effectively fulfill this structural role.

Conclusion

In this study, we successfully applied a ligand-guided homology modeling workflow to H3R.

Therefore, 1000 homology models were generated and evaluated for allowing a charged inter-

action in ligand docking experiments. A structural analysis of best and worst performing mod-

els revealed an important conformation of the binding site residue E5.46 that is critical for

proper ligand placement by the docking program. The best performing model was subse-

quently used in a virtual screening campaign and resulted in the identification of 2 novel H3R

ligands scaffolds with nanomolar affinity. Although successful, we do not claim that the best

performing model is necessarily the most realistic one. However, we could show that many

models were generated that allowed none or only few docking poses with the characteristic

charged interaction. Thus, a single, easy-to-handle descriptor could be used to eliminate many

low-quality homology models from further analysis.

Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands
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Experimental section

Preparation of ligand data

The following workflow was conducted in KNIME [43] if not specified else. Histamine H3

receptor (H3R) ligand data was retrieved from Chembl 20 [40] database and filtered for

Fig 4. In-vitro validation of virtual screening hits identified 2 novel nanomolar H3R ligands. Activity results of radioligand depletion assay against H3R. Ki data

is presented as mean values calculated from at least three independent experiments, each performed in triplicates. aCHEMBL1172076 with Tanimoto score of 0.53

when comparing with compound 5 using Morgan fingerprints, bCHEMBL180478 with Tanimoto score of 0.36 when comparing with compound 6 using Morgan

fingerprints.

https://doi.org/10.1371/journal.pone.0218820.g004
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molecular weight (� 500 Da), confidence score (= 9), standard activity type (Ki, Kd, IC50 or

EC50), standard relation (=), standard activity value (� 10) and standard activity unit (nM).

Ligands with unclarified stereo centers were removed with a combination of RDKit [42] and

Indigo [48] nodes. If multiple activities were available for a single ligand, binding data (Ki, Kd)

was preferred over functional data IC50 or EC50) and more recent data was preferred over

older data. The literature of the remaining compounds was checked to remove agonists result-

ing in a final set of 632 inverse agonists. From this set 10 diverse inverse agonists (Table A in

S1 File) were selected using the RDKit diversity picker based on MorganFeat fingerprints [41]

(diameter = 4). This set was used for docking experiments to generate pharmacophores. Addi-

tionally, 100 diverse inverse agonists were selected for pharmacophore validation. Further-

more, the 100 diverse inverse agonists were used to generate decoys using the DUD-E decoy

generator [39] for pharmacophore validation. The decoy set contains 3051 unique molecules.

3D coordinates of all molecules used in this study were generated and energetically minimized

with the MMFF94s [49] force field using RDKit nodes[42]. Hydrogens were added, strong

acids deprotonated and strong bases protonated by using the molecule wash function in MOE

2015 [24].

Homology modeling

The amino acid sequence of human H3R was retrieved from Uniprot [50] (Q9Y5N1) and

employed for a homology model template search in the PDB[51] using the BLAST algorithm

[52]. Structure files of the top ranked templates in the inactive conformation were used for an

alignment in MOE 2015 [24]. Surprisingly, the crystal structure of H1R (3RZE [16]) did not

show the highest sequence similarity to H3R. Also, the extracellular loop 2 (ECL2) close to the

orthosteric binding pocket is not resolved in the H1R structure. Hence, homology modeling

was performed with a multiple-template approach. MODELLER 9.15 [17] was used to generate

1000 homology models using H1R (3RZE [16]), muscarinic M2 receptor (M2R, 3UON [53])

and muscarinic M3 receptor (M3R, 4U15 [54]) as templates. Since ECL2 is not completely

resolved in the H1R structure (3RZE), unresolved ECL2 parts were built by MODELLER solely

based on M2R (3UON) and M3R (4U15). The sequence alignment as well as changed parame-

ters of MODELLER functions can be found in the supporting information (Fig A and Table B

in S1 File).

Fig 5. Potential binding modes of active ligands are very similar. Observed interaction of screening hits 5 (A) and 6 (B). Red arrows–hydrogen bond acceptors, green

arrows–hydrogen bond donors, blue star–positive ionizable, yellow sphere–hydrophobic contact.

https://doi.org/10.1371/journal.pone.0218820.g005
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Docking experiments

A set of 9 inverse agonists [19] (Table C in S1 File) was chosen to guide the homology model

selection and docked into all homology models using GOLD 5.2 [55] with default settings if

not specified otherwise. The active site was defined by residues that are known from other ami-

nergic GPCRs to be involved in ligand binding (D3.32, Y3.33, Y4.56, E5.46, W6.48, Y6.51 and P7.39)

[11]. 10 conformations were generated per molecule with the genetic algorithm set to ’Library

Screening’. Early termination was disabled resulting in 90 conformations per homology

model. Docking results were analyzed for ionic interaction between the ligand and D3.32 that is

characteristic for aminergic GPCRs [11]. Less or equal than 6 Å between the carbon atom of

the carboxyl group of D3.32 and the positively charged amine of the ligand was considered to

be sufficient for ionic interaction. Docking and scoring have been performed to twice to con-

trol for variation introduced by the docking algorithm (Fig B in S1 File).

Homology model evaluation

10 best and 10 worst performing models were tested for geometric errors like phi-psi outliers

and heavy atom clashes in MOE 2015 [24] as well as with homology modeling evaluation pro-

grams including VERIFY 3D [25], ERRAT [26] and PROVE [27]. No statistically significant

difference was found (Fig C in S1 File).

Pharmacophore generation

The 10 diverse H3R inverse agonists generated as described above were docked into the

selected homology model using GOLD 5.2 [55] with default settings if not specified otherwise.

The active site was defined by residues that are known from other aminergic GPCRs to be

involved in ligand binding(D3.32, Y3.33, Y4.56, E5.46, W6.48, Y6.51 and P7.39) [11]. 10 conforma-

tions were generated per molecules with flip ring corners, flip pyramidal N and generate

diverse solutions settings enabled and early termination setting disabled. Protein HBond con-

straints with a constraint weight of 10 and a minimum H-bond geometry weight of 0.005 were

added to focus on conformations involving hydrogen bonds to carboxyl oxygens of D3.32 and

E5.46, since all docked ligands contain a positively charged group that should interact with neg-

atively charged carboxyl-group of D3.32 or E5.42. Docking results were analyzed in LigandScout

3.12 [56] for interactions explaining the structure-activity relationship. Selected complexes

were minimized using Szybki 1.8.0.1 [38] with the MMFF94s forcefield and the Poisson-Boltz-

mann model. Sidechains within 10 Å were set flexible to allow adaption of the binding site resi-

dues to the docked ligand. LigandScout 3.12 was used to generate pharmacophores of the

minimized complexes. Default pharmacophores generated with LigandScout 3.12 were opti-

mized against a set of 100 diverse active inverse agonists and 3051 decoys by removing features

or increasing the tolerance radius of selected features if supported by the structure activity rela-

tionship. Three pharmacophores were found to successfully discriminate between actives and

decoys according to receiver operating characteristic curves (Fig E in S1 File).

Virtual screening and selection

The three selected pharmacophores were employed to screen a library of 1464080 molecules

(Enamine Ltd., Kyiv, Ukraine, www.enamine.net) using LigandScout 3.12 [56] resulting in

15965 hits. These hits were redocked into the respective minimized model using GOLD 5.2

with default settings if not specified otherwise. The active site was defined by residues that are

known from other aminergic GPCRs to be involved in ligand binding (D3.32, Y3.33, Y4.56, E5.46,

W6.48, Y6.51 and P7.39) [11]. 10 conformations were generated per molecules with flip ring

Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands
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corners, flip pyramidal N and generate diverse solutions settings enabled. The redocked poses

were scored to match the features of the respective pharmacophore model resulting in 73 hits.

This set was visually inspected, and 10 molecules were selected for purchase. Ordered com-

pounds were analyzed for purity with LC-MS leading to exclusion of 2 molecules from further

analysis. The 8 remaining molecules possess purities of at least 95% and were tested in-vitro

for activity against H3R (Table E in S1 File).

In-vitro experiments

Radioligand depletion assays were performed as described previously using crude hH3R mem-

brane extracts obtained from HEK-293 cells stably expressing the hH3R [15,57]. Briefly, crude

membrane extracts were incubated with various concentrations of test ligands (between 0.01

nM and 100 μM) and [3H]-N-alpha-methylhistamine. Bound radioligand were harvested

through GF/B filters and measured using liquid scintillation counting. Data analysis were per-

formed with GraphPad Prism 6 using non-linear regression. The Ki values for each experi-

ment were obtained according to Cheng-Prusoff and converted to pKi values to allow

statistical analysis. Mean values were calculated from at least three independent experiments,

each performed in triplicates (Table E in S1 File).

Supporting information

S1 File. PDF File with used molecular structures as well as more detailed parameters and

results.

(PDF)
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