216 research outputs found

    Epidermolysis bullosa in South Africa

    Get PDF

    Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia

    Get PDF
    BACKGROUND: Most patients with familial primary pulmonary hypertension have defects in the gene for bone morphogenetic protein receptor II (BMPR2), a member of the transforming growth factor beta (TGF-beta) superfamily of receptors. Because patients with hereditary hemorrhagic telangiectasia may have lung disease that is indistinguishable from primary pulmonary hypertension, we investigated the genetic basis of lung disease in these patients. METHODS: We evaluated members of five kindreds plus one individual patient with hereditary hemorrhagic telangiectasia and identified 10 cases of pulmonary hypertension. In the two largest families, we used microsatellite markers to test for linkage to genes encoding TGF-beta-receptor proteins, including endoglin and activin-receptor-like kinase 1 (ALK1), and BMPR2. In subjects with hereditary hemorrhagic telangiectasia and pulmonary hypertension, we also scanned ALK1 and BMPR2 for mutations. RESULTS: We identified suggestive linkage of pulmonary hypertension with hereditary hemorrhagic telangiectasia on chromosome 12q13, a region that includes ALK1. We identified amino acid changes in activin-receptor-like kinase 1 that were inherited in subjects who had a disorder with clinical and histologic features indistinguishable from those of primary pulmonary hypertension. Immunohistochemical analysis in four subjects and one control showed pulmonary vascular endothelial expression of activin-receptor-like kinase 1 in normal and diseased pulmonary arteries. CONCLUSIONS: Pulmonary hypertension in association with hereditary hemorrhagic telangiectasia can involve mutations in ALK1. These mutations are associated with diverse effects, including the vascular dilatation characteristic of hereditary hemorrhagic telangiectasia and the occlusion of small pulmonary arteries that is typical of primary pulmonary hypertension

    Loss-of-Function in SMAD4 Might Not Be Critical for Human Natural Killer Cell Responsiveness to TGF-β

    Get PDF
    We characterized the NK cell phenotype and function in three family members with Hereditary Hemorrhagic Telangiectasia (HHT) due to heterozygous SMAD4 mutations. Loss-of-function mutation in this gene did not induce developmental effects to alter CD56bright or CD56dim NK cell subset proportions in peripheral blood; and did not result in major differences in either their IL-15-induced proliferation, or their cytokine secretion response to TGF-β1. These data suggest that SMAD4 plays a redundant role in downstream TGF-β signaling in NK cells

    Should the grading of colorectal adenocarcinoma include microsatellite instability status?

    Get PDF
    Adenocarcinomas of the colon and rectum are graded using a 2-tiered system into histologic low-grade and high-grade tumors based on the proportion of gland formation. The current grading system does not apply to subtypes of carcinomas associated with a high frequency of microsatellite instability (MSI), such as mucinous and medullary carcinomas. We investigated the combined effect of histologic grade and MSI status on survival for 738 patients with colorectal carcinoma (48% female; mean age at diagnosis 68.2 years). The proportion of high-grade adenocarcinoma was 18%. MSI was observed in 59 adenocarcinomas (9%), with higher frequency in high-grade tumors compared with low-grade tumors (20% versus 6%; P < .001). Using Cox regression models, adjusting for sex and age at diagnosis and stratifying by the American Joint Committee on Cancer stage, microsatellite stable (MSS) high-grade tumors were associated with increased hazard of all-cause and colorectal cancer specific mortality: hazard ratio 2.09 (95% confidence interval [CI], 1.58-2.77) and 2.54 (95% CI, 1.86-3.47), respectively, both P < .001. A new grading system separating adenocarcinoma into low grade (all histologic low grade and MSI high grade) and high grade (MSS histologic high grade) gave a lower Akaike information criterion value when compared with the current grading system and thus represented a better model fit to stratify patients according to survival. We found that patients with a high-grade adenocarcinoma had significantly shorter survival than patients with low-grade adenocarcinoma only if the tumor was MSS, suggesting that the grading of colorectal adenocarcinoma with high-grade histologic features should be made according to the MSI status of the tumor. (C) 2014 Elsevier Inc. All rights reserved

    Prospective Evaluation over 15 Years of Six Breast Cancer Risk Models.

    Get PDF
    Prospective validation of risk models is needed to assess their clinical utility, particularly over the longer term. We evaluated the performance of six commonly used breast cancer risk models (IBIS, BOADICEA, BRCAPRO, BRCAPRO-BCRAT, BCRAT, and iCARE-lit). 15-year risk scores were estimated using lifestyle factors and family history measures from 7608 women in the Melbourne Collaborative Cohort Study who were aged 50-65 years and unaffected at commencement of follow-up two (conducted in 2003-2007), of whom 351 subsequently developed breast cancer. Risk discrimination was assessed using the C-statistic and calibration using the expected/observed number of incident cases across the spectrum of risk by age group (50-54, 55-59, 60-65 years) and family history of breast cancer. C-statistics were higher for BOADICEA (0.59, 95% confidence interval (CI) 0.56-0.62) and IBIS (0.57, 95% CI 0.54-0.61) than the other models (p-difference ≤ 0.04). No model except BOADICEA calibrated well across the spectrum of 15-year risk (p-value < 0.03). The performance of BOADICEA and IBIS was similar across age groups and for women with or without a family history. For middle-aged Australian women, BOADICEA and IBIS had the highest discriminatory accuracy of the six risk models, but apart from BOADICEA, no model was well-calibrated across the risk spectrum.This work was primarily supported by grant 1129136 from the Australian National Health and Medical Research Council (NHMRC) (https://www.nhmrc.gov.au/). MCCS cohort recruitment was funded by Cancer Council Victoria (https://www.cancervic.org.au/) and VicHealth (https://www.vichealth.vic.gov.au/). The MCCS was further supported by Australian NHMRC grants 209057, 396414 and 1074383, and ongoing follow-up and data management has been funded by Cancer Council Victoria since 1995. Cases and their vital status were ascertained through the Victorian Cancer Registry and the Australian Institute of Health and Welfare, including the National Death Index and the Australian Cancer Database.TN-D is a recipient of a Career Development Fellowship from the National Breast Cancer Foundation (Australia). JLH and MCS are Senior Principal and Senior Research Fellows of the National Health and Medical Research Council (Australia), respectively. ACA and AJL are supported by grants from Cancer Research UK (C12292/A20861 and PPRPGM19 Nov20\100002)

    Combined population genomic screening for three high-risk conditions in Australia: a modelling study

    Get PDF
    BACKGROUND: No previous health-economic evaluation has assessed the impact and cost-effectiveness of offering combined adult population genomic screening for mutliple high-risk conditions in a national public healthcare system. METHODS: This modeling study assessed the impact of offering combined genomic screening for hereditary breast and ovarian cancer, Lynch syndrome and familial hypercholesterolaemia to all young adults in Australia, compared with the current practice of clinical criteria-based testing for each condition separately. The intervention of genomic screening, assumed as an up-front single cost in the first annual model cycle, would detect pathogenic variants in seven high-risk genes. The simulated population was 18–40 year-olds (8,324,242 individuals), modelling per-sample test costs ranging AU100–100–1200 (base-case AU200)fromtheyear2023onwardswithtestinguptakeof50FINDINGS:Overthepopulationlifetime(toage80years),themodelestimatedthatgenomicscreeningper−100,000individualswouldleadto747QALYsgainedbypreventing63cancers,31CHDcasesand97deaths.Inthetotalmodelpopulation,thiswouldtranslateto31,094QALYsgainedbypreventing2612cancers,542non−fatalCHDeventsand4047totaldeaths.AtAU200) from the year 2023 onwards with testing uptake of 50%. Interventions for identified high-risk variant carriers follow current Australian guidelines, modelling imperfect uptake and adherence. Outcome measures were morbidity and mortality due to cancer (breast, ovarian, colorectal and endometrial) and coronary heart disease (CHD) over a lifetime horizon, from healthcare-system and societal perspectives. Outcomes included quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio (ICER), discounted 5% annually (with 3% discounting in scenario analysis). FINDINGS: Over the population lifetime (to age 80 years), the model estimated that genomic screening per-100,000 individuals would lead to 747 QALYs gained by preventing 63 cancers, 31 CHD cases and 97 deaths. In the total model population, this would translate to 31,094 QALYs gained by preventing 2612 cancers, 542 non-fatal CHD events and 4047 total deaths. At AU200 per-test, genomic screening would require an investment of AU832millionforscreeningof50832 million for screening of 50% of the population. Our findings suggest that this intervention would be cost-effective from a healthcare-system perspective, yielding an ICER of AU23,926 (∼£12,050/€14,110/US15,345)perQALYgainedoverthestatusquo.Inscenarioanalysiswith315,345) per QALY gained over the status quo. In scenario analysis with 3% discounting, an ICER of AU4758/QALY was obtained. Sensitivity analysis for the base case indicated that combined genomic screening would be cost-effective under 70% of simulations, cost-saving under 25% and not cost-effective under 5%. Threshold analysis showed that genomic screening would be cost-effective under the AU50,000/QALYwillingness−to−paythresholdatper−testcostsuptoAU50,000/QALY willingness-to-pay threshold at per-test costs up to AU325 (∼£164/€192/US$208). INTERPRETATION: Our findings suggest that offering combined genomic screening for high-risk conditions to young adults would be cost-effective in the Australian public healthcare system, at currently realistic testing costs. Other matters, including psychosocial impacts, ethical and societal issues, and implementation challenges, also need consideration. FUNDING: Australian Government, Department of Health, Medical Research Future Fund, Genomics Health Futures Mission (APP2009024). National Heart Foundation Future Leader Fellowship (102604)

    Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22

    Get PDF
    A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al

    The Human Genome Organisation (HUGO) and a vision for Ecogenomics: the Ecological Genome Project

    Get PDF
    Background: The following outlines ethical reasons for widening the Human Genome Organisation’s (HUGO) mandate to include ecological genomics. Main: The environment influences an organism’s genome through ambient factors in the biosphere (e.g. climate and UV radiation), as well as the agents it comes into contact with, i.e. the epigenetic and mutagenic effects of inanimate chemicals and pollution, and pathogenic organisms. Emerging scientific consensus is that social determinants of health, environmental conditions and genetic factors work together to influence the risk of many complex illnesses. That paradigm can also explain the environmental and ecological determinants of health as factors that underlie the (un)healthy ecosystems on which communities rely. We suggest that The Ecological Genome Project is an aspirational opportunity to explore connections between the human genome and nature. We propose consolidating a view of Ecogenomics to provide a blueprint to respond to the environmental challenges that societies face. This can only be achieved by interdisciplinary engagement between genomics and the broad field of ecology and related practice of conservation. In this respect, the One Health approach is a model for environmental orientated work. The idea of Ecogenomics—a term that has been used to relate to a scientific field of ecological genomics—becomes the conceptual study of genomes within the social and natural environment. Conclusion: The HUGO Committee on Ethics, Law and Society (CELS) recommends that an interdisciplinary One Health approach should be adopted in genomic sciences to promote ethical environmentalism. This perspective has been reviewed and endorsed by the HUGO CELS and the HUGO Executive Board
    • …
    corecore