75,083 research outputs found

    Interstellar 12C/13C from CH+ absorption lines: Results from an extended survey

    Full text link
    The 12C/13C isotope ratio in the interstellar medium (ISM), and its evolution with time, is an important tracer of stellar yields. Spatial variations of this ratio can be used to study mixing in the ISM. We want to determine this ratio and its spatial variations in the local ISM from CH+ absorption lines in the optical towards early-type stars. The aim is to determine the average value for the local ISM and study possible spatial variations. We observed a large number of early-type stars with Feros to extend the sample of suitable target stars for CH+ isotope studies. The best suited targets were observed with Uves with higher signal-to-noise ratio and spectral resolution to determine the isotope ratio from the interstellar CH+ lines. This study significantly expands the number of 13CH+ detections. We find an average ratio of = 76.27 +- 1.94 or, for f = 1/R, = (120.46 +- 3.02) 10^{-4}. The scatter in f is 6.3 sigma(). This findings strengthens the case for chemical inhomogeneity in the local ISM, with important implications for the mixing in the ISM. Given the large scatter, the present-day value in the ISM is not significantly larger than the solar value, which corresponds to the local value 4.5 Gyr ago.Comment: 11 pages, 16 figures, 2 tables, A&A submitte

    Molecular Gas Around Young Stellar Clusters

    Get PDF
    We have begun a survey of the molecular gas surrounding 31 young clusters in order to investigate the link between environment and the resulting cluster. We present here a preliminary comparison of two clusters in our sample: GGD12-15 and Mon R2. Since both clusters are located in the MonR2 molecular cloud at a distance of 830 pc, observational biases due to differing sensitivities and angular resolutions are avoided.Comment: 2 pages, 2 figures, uses newpasp.sty. To appear in "Hot Star Workshop III: The Earliest Phases of Massive Star Birth" (ed. P.A. Crowther

    The application of hydrometeorological data obtained by remote sensing techniques for multipurpose reservoir operations

    Get PDF
    Watershed snowpack and streamflow data obtained and transmitted by (ERTS) satellite were used in the operational and water management decisions in the Salt River Project. Located in central Arizona, the Project provides water and electric power for the more than 1.1 million residents of the Salt River Valley. The water supply source is a 33,670 square kilometer (13,000 square mile) watershed and 250 deep well pumps. Six storage reservoirs, four of which have hydroelectric capability, located on two river systems have a storage capacity of over 246,600 hectare-meters (2,000,000 AF.). Information from the watershed during the normal runoff period of December to May and more especially during critical periods of high runoff and minimum reservoir storage capacity is necessary for the reservoir operation regimen. Extent of the snowpack, depth of snow, and the condition of the pack were observed in aerial flights over the watershed
    corecore