56 research outputs found

    Interference effects on the hypersonic, rarefied flow about a flat plate

    Get PDF
    The Direct Simulation Monte Carlo method is used to study the hypersonic, rarified flow interference effects on a flat plate caused by nearby surfaces. Calculations focus on shock-boundary-layer and shock-lip interactions in hypersonic inlets. Results are presented for geometries consisting of a flat plate with different leading-edge shapes over a flat lower wall and a blunt-edge flat plate over a 5-degree wedge. The problems simulated correspond to a typical entry flight condition of 7.5 km/s at altitudes of 75 to 90 km. The results show increases in predicted local heating rates for shock-boundary-layer and shock-lip interactions that are quantitatively similar to those observed experimentally at much higher densities

    Multiscale turbulence effects in supersonic jets exhausting into still air

    Get PDF
    A modified version of the multiscale turbulence model of Hanjalic has been applied to the problem of supersonic jets exhausting into still air. In particular, the problem of shock-cell decay through turbulent interaction with the mixing layer has been studied for both mildly interacting and strongly resonant jet conditions. The modified Hanjalic model takes into account the nonequilibrium energy transfer between two different turbulent spectral scales. The turbulence model was incorporated into an existing shock-capturing, parabolized Navier-Stokes computational model in order to perform numerical experiments. The results show that the two-scale turbulence model provides significant improvement over one-scale models in the prediction of plume shock structure for underexpanded supersonic (Mach 2) and sonic (Mach 1) jets. For the supersonic jet, excellent agreement with experiment was obtained for the centerline shock-cell pressure decay up to 40 jet radii. For the sonic jet, the agreement with experiment was not so good, but the two-scale model still showed significant improvement over the one-scale model. It is shown that by relating some of the coefficients in the turbulent-transport equations to the relative time scale for transfer of energy between scales the two-scale model can provide predictions that bound the measured shock-cell decay rate for the sonic jet

    Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC

    Get PDF
    The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models

    Predicting Flows of Rarefied Gases

    Get PDF
    DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation

    DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake

    Get PDF
    Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities

    Procedure for Adapting Direct Simulation Monte Carlo Meshes

    Get PDF
    A technique is presented for adapting computational meshes used in the G2 version of the direct simulation Monte Carlo method. The physical ideas underlying the technique are discussed, and adaptation formulas are developed for use on solutions generated from an initial mesh. The effect of statistical scatter on adaptation is addressed, and results demonstrate the ability of this technique to achieve more accurate results without increasing necessary computational resources

    Mars Pathfider Rarefied Aerodynamics: Computations and Measurements

    Get PDF
    On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing at Mars. In the present paper, the focus is on the hypersonic rarefied portion of Pathfinder's atmospheric entry where the synergy of flight measurements, aerodynamic calculations, and atmospheric modeling tools are used to extract Pathfinder's attitude and the freestream density. Accuracy of the capsule aerodynamics directly impacts the inferred atmospheric properties extracted from deceleration measurements made by on-board accelerometers. The range of rarefaction considered in this study extends from the free molecular to continuum conditions and angles of attack from O to 30 deg. The aerodynamic computations are made with free-molecular and direct simulation Monte Carlo codes. The calculations show that Pathfinder is statically unstable for much of the transitional rarefied regime. Due to the relatively modest forces and the gyroscopic motion of the spacecraft, the angle of attack excursions were less than 5 deg as inferred from force measurements for the rarefied portion of entry and approached a nominal zero degree trim angle near hypersonic continuum conditions

    Effects of Chemistry on Blunt-Body Wake Structure

    Get PDF
    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities

    Plume Modeling and Application to Mars 2001 Odyssey Aerobraking

    No full text
    A modified source flow model was used to calculate the plume flowfield from a Mars Odyssey thruster during aerobraking. The source flow model results compared well with previous detailed CFD results for a Mars Global Surveyor thruster. Using an iso-density surface for the Odyssey plume, DSMC simulations were performed to determine the effect the plumes have on the Odyssey aerodynamics. A database was then built to incorporate the plume effects into 6-DOF simulations over a range of attitudes and densities expected during aerobraking. 6-DOF simulations that included the plume effects showed better correlation with flight data than simulations without the plume effects

    PLUME MODELING AND APPLICATION TO MARS 2001 ODYSSEY AEROBRAKING

    No full text
    A modified source flow model was used to calculate the plume flowfield from a Mars Odyssey thruster during aerobraking. The source flow model results compared well with previous detailed CFD results for a Mars Global Surveyor thruster. Using an iso-density surface for the Odyssey plume, DSMC simulations were performed to determine the effect the plumes have on the Odyssey aerodynamics. A database was then built to incorporate the plume effects into 6-DOF simulations over a range of attitudes and densities expected during aerobraking. 6-DOF simulations that included the plume effects showed better correlation with flight data than simulations without the plume effects
    corecore