536 research outputs found

    Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells.

    Get PDF
    Human cytomegalovirus (HCMV) latency in the myeloid lineage is maintained by repressive histone modifications around the major immediate early promoter (MIEP), which results in inhibition of the lytic viral life cycle. We now show that pharmacological inhibition of histone deacetylases (HDACs) relieves this repression of the MIEP and induces transient expression of the viral lytic immediate early (IE) antigens but, importantly, not full virus reactivation. In turn, these latently infected cells now become targets for IE-specific cytotoxic T cells (CTLs) which are present at high frequency in all normal healthy HCMV positive carriers but would normally be unable to target latent (lytic antigen-negative) cells. This approach of transiently inducing viral lytic gene expression by HDAC inhibition, in otherwise latently infected cells, offers a window of opportunity to target and purge the latent myeloid cell reservoir by making these normally immunologically undetectable cells visible to pre-existing host immune responses to viral lytic antigens.This work was funded by a British Medical Research programme grant, grant number G0701279 and Wellcome Research Grant, grant number RG68483. This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2467

    HCMV carriage in the elderly diminishes anti-viral functionality of the adaptive immune response resulting in virus replication at peripheral sites.

    Get PDF
    Human cytomegalovirus (HCMV) infection and periodic reactivation is, generally, well controlled by adaptative immune responses in the healthy. In older people, overt HCMV disease is rarely seen despite the association of HCMV with increased risk of mortality; evidence from studies of unwell aged populations suggest that HCMV seropositivity is an important co-morbidity factor. HCMV genomes have been detected in urine from older donors, suggesting that the immune response prevents systemic disease but possibly immunomodulation due to lifelong viral carriage may alter its efficacy at peripheral tissue sites. Previously we have demonstrated that there were no age-related expansions of T cell responses to HCMV or increase in latent viral carriage with age and these T cells produced anti-viral cytokines and viremia was very rarely detected. To investigate the efficacy of anti-HCMV responses with increasing age, we used an in vitro Viral Dissemination Assay (VDA) using autologous dermal fibroblasts to determine the anti-viral effector capacity of total PBMC, as well as important subsets (T cells, NK cells). In parallel we assessed components of the humoral response (antibody neutralization) and combined this with qPCR detection of HCMV in blood, saliva and urine in a cohort of young and old donors. Consistent with previous studies, we again show HCMV specific cIL-10, IFNγ and TNFα T cell responses to peptides did not show an age-related defect. However, assessment of direct anti-viral cellular and antibody-mediated adaptive immune responses using the VDA shows that older donors are significantly less able to control viral dissemination in an in vitro assay compared to young donors. Corroborating this observation, we detected viral genomes in saliva samples only from older donors, these donors had a defect in cellular control of viral spread in our in vitro assay. Phenotyping of fibroblasts used in this study shows expression of a number of checkpoint inhibitor ligands which may contribute to the defects observed. The potential to therapeutically intervene in checkpoint inhibitor pathways to prevent HCMV reactivation in the unwell aged is an exciting avenue to explore

    Efficient human cytomegalovirus reactivation is maturation dependent in the Langerhans dendritic cell lineage and can be studied using a CD14+ experimental latency model

    Get PDF
    Studies from a number of laboratories have shown that the myeloid lineage is prominent in human cytomegalovirus (HCMV) latency, reactivation, dissemination, and pathogenesis. Existing as a latent infection in CD34(+) progenitors and circulating CD14(+) monocytes, reactivation is observed upon differentiation to mature macrophage or dendritic cell (DC) phenotypes. Langerhans' cells (LCs) are a subset of periphery resident DCs that represent a DC population likely to encounter HCMV early during primary infection. Furthermore, we have previously shown that CD34(+) derived LCs are a site of HCMV reactivation ex vivo. Accordingly, we have utilized healthy-donor CD34(+) cells to study latency and reactivation of HCMV in LCs. However, the increasing difficulty acquiring healthy-donor CD34(+) cells--particularly from seropositive donors due to the screening regimens used--led us to investigate the use of CD14(+) monocytes to generate LCs. We show here that CD14(+) monocytes cultured with transforming growth factor β generate Langerin-positive DCs (MoLCs). Consistent with observations using CD34(+) derived LCs, only mature MoLCs were permissive for HCMV infection. The lytic infection of mature MoLCs is productive and results in a marked inhibition in the capacity of these cells to promote T cell proliferation. Pertinently, differentiation of experimentally latent monocytes to the MoLC phenotype promotes reactivation in a maturation and interleukin-6 (IL-6)-dependent manner. Intriguingly, however, IL-6-mediated effects were restricted to mature LCs, in contrast to observations with classical CD14(+) derived DCs. Consequently, elucidation of the molecular basis behind the differential response of the two DC subsets should further our understanding of the fundamental mechanisms important for reactivation

    Low intensity transcranial magnetic stimulation modulates skilled motor learning in adult mice

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical plasticity in clinical and non-clinical populations. Clinically, rTMS is delivered to targeted regions of the cortex at high intensities (>1 T). We have previously shown that even at low intensities, rTMS induces structural and molecular plasticity in the rodent cortex. To determine whether low intensity rTMS (LI-rTMS) alters behavioural performance, daily intermittent theta burst LI-rTMS (120 mT) or sham was delivered as a priming or consolidating stimulus to mice completing 10 consecutive days of skilled reaching training. Relative to sham, priming LI-rTMS (before each training session), increased skill accuracy (~9%) but did not alter the rate of learning over time. In contrast, consolidating LI-rTMS (after each training session), resulted in a small increase in the rate of learning (an additional ~1.6% each day) but did not alter the daily skill accuracy. Changes in behaviour with LI-rTMS were not accompanied with long lasting changes in brain-derived neurotrophic factor (BDNF) expression or in the expression of plasticity markers at excitatory and inhibitory synapses for either priming or consolidation groups. These results suggest that LI-rTMS can alter specific aspects of skilled motor learning in a manner dependent on the timing of intervention

    Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4 + and CD8 + T-cell responses in older adults positively correlates with response size

    Get PDF
    Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-α, interferon-γ, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8 + and CD4 + T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8 + and CD4 + cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4 + and CD8 + T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging

    Mucosal sensitization to German cockroach involves protease-activated receptor-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 <it>in vitro</it>. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen.</p> <p>Methods</p> <p>Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNγ levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed.</p> <p>Results</p> <p>Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically.</p> <p>Conclusions</p> <p>We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.</p

    CMV immune evasion and manipulation of the immune system with aging

    Get PDF
    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.DvB and SPHVdB are funded by a strategic program grant RIVM. MRW and SEJ are funded by the Medical Research Council Grant (GB) [MR/K021087/1]. The work summarized in the section titled BThe impact of aging on IL-10 secreting HCMV latent antigen specific T cells and latent viral load^ was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. We gratefully acknowledge the participation of all Cambridge NIHR BioResource volunteers, and we thank the Cambridge BioResource staff for their help with volunteer recruitment. The Cambridge BioResource is funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC) and the NHS Blood and Transplant (NHSBT). CAB is funded by an NIH grant AI101423. LCS was funded in part by grants from the Helmholtz Association (HGFVI-424) and the German Scientific Council (SFB900 TP B2)
    corecore