105 research outputs found

    Effect of Polymeric Binders on Dispersion of Active Particles in Aqueous LiFePO4_{4}-Based Cathode Slurries as well as on Mechanical and Electrical Properties of Corresponding Dry Layers

    Get PDF
    We investigated the effect of carboxymethyl cellulose (CMC) and the particulate fluorine/acrylate hybrid polymer (FAHP) on the flow behavior of LiFePO4_{4}-based cathode slurries as well as on electrical and mechanical properties of the corresponding dry layers. CMC dissolves in water and partly adsorbs on the active particles. Thus, it has a strong impact on particle dispersion and a critical CMC concentration distinguished by a minimum in yield stress and high shear viscosity is found, indicating an optimum state of particle dispersion. In contrast, the nanoparticulate FAHP binder has no effect on slurry rheology. The electrical conductivity of the dry layer exhibits a maximum at a CMC concentration corresponding to the minimum in slurry viscosity but monotonically decreases with increasing FAHP concentration. Adhesion to the current collector is provided by FAHP, and the line load in peel tests strongly increases with FAHP concentration, whereas CMC does not contribute to adhesion. The electrical conductivity and adhesion values obtained here excel reported values for similar aqueous LiFePO4_{4}-based cathode layers using alternative polymeric binders. Both CMC and FAHP contribute to the cohesive strength of the layers; the contribution of CMC, however, is stronger than that of FAHP despite its lower intrinsic mechanical strength. We attribute this to ist impact on the cathode microstructure since high CMC concentrations result in a strong alignment of LiFePO4_{4} particles, which yields superior cohesive strength

    Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers

    Get PDF
    We present a holistic view on the role of polymeric binders in waterborne LiB anodes, including preparation and processing of wet slurries as well as microstructure, electrical conductivity and mechanical integrity of dry electrode layers. We focus on carboxymethyl cellulose (CMC), with respect to technical application the influence of soft, nano-particulate styrene–butadiene rubber (SBR) as secondary binder is also addressed. We discuss the influence of CMC concentration, molecular weight (MW_{W}) and degree of substitution (DS) on flow behavior of anode slurries. Rheological data are not only relevant for processing, here we use them to characterize the adsorption of CMC on active material particles and dispersion of these particles in the slurry at technically relevant concentrations. The fraction of CMC adsorbed onto graphite particles increases with increasing MW_{W} and decreasing DS. Electrical conductivity increases with MW_{W}, i.e. with decreasing free polymer deteriorating conductive carbon black pathways. CMC does not contribute to the adhesion of electrode layers, irrespective of MW_{W} or DS, technically feasible adhesion is inferred by SBR. Cohesive strength of anode layers, determined here for the first time under well-defined mechanical load, increases with increasing MW_{W} and decreasing DS, i.e. with increasing fraction of adsorbed CMC and corresponding improved particle dispersion. Strong cohesion and high electrical conductivity are correlated to an alignment of graphite particles as revealed by electron microscopy, presumably enabled by higher particle mobility in well-dispersed slurries. Accordingly, targeted choice of CMC is a valuable means to control processing, electrical conductivity and mechanical strength of LiB electrodes

    Rheology and Screen-Printing Performance of Model Silver Pastes for Metallization of Si-Solar Cells

    Get PDF
    Further strong growth of solar energy conversion based on PV (photovoltaic) technology requires constant improvement to increase solar cell efficiency. The challenge in front-side metallization of Si-solar cells is to print uniform fine lines with a high aspect ratio to achieve higher efficiencies simultaneously with a reduced consumption of raw materials. An in-depth understanding of the relationship between paste composition, rheology and screen-printed line morphology is essential. Three model pastes with similar silver content and corresponding vehicles differing in their thixotropic agent content were investigated. Rheological properties (yield stress, viscosity, wall slip velocity, structural recovery, and fracture strain) were determined using steady and oscillatory shear, as well as elongational flow rheometry. Pastes were screen-printed at various speeds through a layout screen including line widths between 20 and 55 µm. Dried fingers were analyzed with respect to line width, aspect ratio (AR) and cross-sectional area. Our investigations reveal that minor changes of thixotropic agent result in substantial variations of the paste’s flow properties. However, this only weakly affects the line morphology. Irrespective of printing speed or finger opening, AR is slightly increasing; i.e., the screen-printing process is robust against changes in paste rheolog

    Microrheology imaging of fiber suspensions – a case study for lyophilized collagen I in HCl solutions

    Get PDF
    In fiber suspensions with low optical contrast, the in situ characterization of structural properties with conventional microscopy methods fails. However, overlaying subsequent images of multiple particle tracking (MPT) videos including short trajectories usually discarded in MPT analysis allowed for direct visualization of individual fibers and the network structure of lyophilized collagen I (Coll) distributed in hydrochloric acid solutions. MPT yielded a broad distribution of mean square displacements (MSDs). Freely diffusing tracer particles yielded viscosities indicating that, irrespective of concentration, a constant amount of Coll is dissolved in the aqueous phase. Particles found elastically trapped within fibrous Coll structures exhibited a broad range of time-independent MSDs and we propose a structure comprising multiple fiber bundles with dense regions inaccessible to tracers and elastic regions of different stiffness in between. Bulky aggregates inaccessible to the 0.2 μm tracers exist even at low Coll concentrations, a network of slender fibers evolves above the sol–gel transition and these fibers densify with increasing Coll concentration. This novel MPT-based imaging technique possesses great potential to characterize the fiber distribution in and structural properties of a broad range of biological and technical suspensions showing low contrast when imaged with conventional techniques. Thus, MPT imaging and microrheology will help to better understand the effect of fiber distribution and network structure on the viscoelastic properties of complex suspensions

    Imaging of the microstructure of Carbopol dispersions and correlation with their macroelasticity: A micro- and macrorheological study

    Get PDF
    We developed a new data analysis strategy, the so-called micro-rheo-mapping technique, based on multiparticle tracking experiments to obtain an accurate and direct visualization of the microstructure of commercial acrylate thickeners of Carbopol-type with high (Ultrez 10), intermediate (ETD 2020), and low (ETD 2050) degree of crosslinking. At low polymer concentration, aggregates made of several primary Carbopol particles are formed with an average diameter of 43 ± 11, 56 ± 14, and 10 ± 2.5 μm for Ultrez 10, ETD 2020, and ETD 2050, respectively. For ETD 2050, the least crosslinked thickener, the shell of dangling polymer chains covering the aggregate surface is thicker than for ETD 2020 and Ultrez 10. At technically relevant polymer concentrations, our results indicate, for all three thickeners, that the microstructure is highly heterogeneous with regions of different crosslink densities. One region inaccessible for tracer particles corresponding to a mixture of polydisperse aggregates and individual primary particles with a core mesh size less than 200 nm and a second, diluted enough to be accessible and which exhibits both elastic and viscous characteristics. The study of the impact of pH, polymer concentration, and crosslink density on these local structural and viscoelastic heterogeneities as well as macrorheological properties allowed us to establish a correlation between microstructure and macroelasticity. In particular, we found that the bulk shear modulus strongly depends on the fraction of inaccessible areas, making this microscopic parameter most relevant for describing the macroelasticity of Carbopol gels, whereas the local elasticity of the interstitial regions is of minor importance

    Dimensional analysis of droplet size and ligament length during high-speed rotary bell atomization

    Get PDF
    Modern spray-coating processes are based on high-volume, low-pressure, airless atomization or high-speed rotary bell atomization, often assisted by electrostatic charging to increase the transfer efficiency. The process from the liquid film flow beneath the bell, through ligament formation and consecutive disintegration to droplet deposition, has been constantly explored during the evolution of automotive spray coating. This work proposes a set of dimensionless groups that fully describe the process from film flow to ligament disintegration, including shear and elongational flow effects during atomization of particle laden, shear thinning, viscoelastic fluids
    • …
    corecore