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Abstract
Complex flow fields including high elongational deformation occur in numerous industrial processes such as spraying, coating,
fiber spinning, and screen or inkjet printing. Fully exploiting the potential of these technologies suffers from a lack of knowledge
regarding how elongational flow properties of the processed fluids affect the results of these operations. Here, we present two
strategies that allow for varying the elongational flow behavior independent of shear rheology. First, two acrylic thickener
solutions that differ with respect to the fraction of hydrophobic co-monomers and hence with respect to their degree of inter-
and intramolecular hydrophobic association were mixed to vary the elongational relaxation time, as determined using capillary
breakup elongational rheometry (CaBER), by almost two orders of magnitude without affecting shear viscosity of these solutions
in a wide, processing-relevant shear rate range. Second, a substantial increase in the elongational flow resistance was achieved by
adding a small amount of plate-like particles without affecting the shear viscosity of these thickener solutions. A fourfold increase
of the elongational relaxation time was observed upon the addition of 3.5 vol.% of glass flakes to such a highly shear-thinning
system. A similar effect was also observed for an industrial waterborne automotive basecoat due to added aluminum flakes. This
work may be useful for product development since the control of extensional viscosity can improve technological applications,
and the introduced model systems may therefore be used for systematic, goal-oriented investigations of the relevance of
elongational flow properties in the technological processes mentioned above.
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Introduction

In a broad variety of technical processes, fluids are subject to
complex flows that often include components of elongational
deformation. For Newtonian fluids, extensional viscosity is
strain rate-independent irrespective of flow kinematics, but
the ratio of extensional to shear viscosity depends on the type
of flow (Trouton 1906). However, many industrially relevant
materials are viscoelastic, shear-thinning fluids. For these non-
Newtonian fluids, extensional viscosity generally depends not

only on the strain rate but also on the total strain, and often a
steady-state is hardly accessible. Furthermore, extensional vis-
cosity can be orders of magnitude higher than the shear vis-
cosity, and strain hardening can be observed even for shear-
thinning fluids (Spearot and Metzner 1972; Meissner 1985).
Therefore, the adjustment of shear and elongational viscosity
independently according to processing and application de-
mands is an important technological challenge. Here, we will
demonstrate how to vary elongational relaxation time in a
broad range without significantly affecting shear flow
properties.

This work is motivated by the extensive literature on the
effect of extensional viscosity on atomization. For example, it
has been shown that liquid breakup and droplet formation are
delayed by an increase in this rheological parameter (Mansour
and Chigier 1995; Thompson and Rothstein 2007).
Furthermore, an increase in the elongational flow resistance
leads to an increase in the droplet diameter (Dexter 1996; Xing
et al. 1999; Ochowiak et al. 2012). Fernando et al. (2000)
showed that roll misting can be prevented using fluids with

* Walter Oswald
Walter.Oswald@kit.edu

Norbert Willenbacher
Norbert.Willenbacher@kit.edu

1 Karlsruhe Institute of Technology, Institute for Mechanical Process
Engineering and Mechanics, Gotthard-Franz-Straße 3, Geb. 50.31,
76131 Karlsruhe, Germany

Rheologica Acta
https://doi.org/10.1007/s00397-019-01170-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00397-019-01170-y&domain=pdf
mailto:Walter.Oswald@kit.edu


low extensional viscosity. The tendency of the droplet bounce
after impact is decreased by an increase in the extensional
viscosity (Bergeron et al. 2000; Williams et al. 2008).
Furthermore, elongational flow resistance supports the de-
crease in fluid retraction (Bergeron et al. 2000; Bartolo et al.
2007). Many studies also suggest that inkjet printing (Lampe
et al. 2005; Vadillo et al. 2010; Hoath et al. 2014; Jimenez
et al. 2018) and fiber spinning (Hyun 1999; Gupta and
Chokshi 2017) are strongly affected by the elongational vis-
cosity of the processed fluids.

Coatings, inks, or adhesives are formulated as low viscos-
ity multiphase fluids. Typically, such formulations exhibit
strong shear thinning, often due to the presence of the so-
called rheology modifiers or thickeners, i.e., polymers with
high molecular weight and/or complex topology and supra-
molecular aggregation structure. Typically, they also include
solid particles with different shapes in order to guarantee the
desired application properties.

Several techniques were developed for characterizing
elongational flow behavior, such as fiber spinning (Spearot
and Metzner 1972; Papanastasiou et al. 1987), entrance flows
(Cogswell 1972; Kwag and Vlachopoulos 1991;
Padmanabhan et al. 1997), opposed jet (Fuller et al. 1987),
or filament stretching (Tirtaatmadja and Sridhar 1993;
Spiegelberg et al. 1996; Anna et al. 2001) rheometry. The
capillary breakup elongational rheometer (CaBER) (Entov
and Hinch 1997; McKinley and Tripathi 2000) is particularly
suitable for low viscosity fluids and provides a predominantly
uniaxial elongational flow (Rodd et al. 2005; Tropea et al.
2007). In this device, an unstable filament is created by rapidly
stretching a fluid drop placed between two circular plates. The
subsequent thinning of the created filament is controlled by
the balance between inertia, viscoelastic, and capillary forces.
Apparent extensional viscosity and elongational relaxation
time λe can be calculated from the thinning dynamics of the
filament.

Polymer solutions can be classified according to their ther-
modynamic properties. Depending on the polymer concentra-
tion, the dilute, semidilute, and concentrated regimes are dis-
tinguished (Teraoka 2002). Capillary thinning of dilute solu-
tions was investigated in many previous studies (Ng et al.
1996; Bazilevskii et al. 1997; Entov and Hinch 1997; Stelter
et al. 2000, 2002; Gupta et al. 2000; Anna and McKinley
2001; Christanti and Walker 2001, 2002; Rothstein and
McKinley 2002; Rodd et al. 2005; Tirtaatmadja et al. 2006;
Clasen et al. 2006; Tembely et al. 2012; Keshavarz et al. 2015;
Greiciunas et al. 2017). For polystyrene in an oligomeric sty-
rene solution, Anna and McKinley (2001) showed that λe
show molecular weight dependence according to the Zimm
model. Stelter et al. (2000) observed the dependence of λe on
polymer concentration. In some studies, even a power-law
scaling was found between λe and the polymer concentration
(Tirtaatmadja et al. 2006; Clasen et al. 2006; Bazilevsky et al.

2011). Clasen (2010), Arnolds et al. (2010), and later
Sachsenheimer et al. (2014) compared λe with the terminal
shear relaxation time λs for PS and PEO solutions in the
semidilute and concentrated regime, revealing that λe < λs.
Additionally, Sachsenheimer et al. (2014) found an exponen-
tial decay for the plot of λe/λs vs. c/c* irrespective of the type
and molecular weight of the polymer, solvent viscosity, or
temperature. Very low ratios λe/λs < 0.1 at c > c* were also
found for aqueous solutions of acrylic polymeric thickeners
known to form large intermolecular aggregates via hydropho-
bic interactions (Kheirandish et al. 2008).

The flow behavior of a polymer melt including non-
Brownian, monodisperse polystyrene spheres was investigat-
ed by Le Meins et al. (2003). Both shear and extensional
viscosity were found to follow the phenomenological
Krieger-Dougherty equation describing the concentration de-
pendence of viscosity, i.e., an increase in the fraction of non-
Brownian particles resulted in a similar increase in the stress
level in shear and elongational deformation. By contrast, sus-
pensions of anisotropic particles show greater resistance to
elongational than to shear deformation. Theoretical work on
stress occurring during elongational deformation of dilute and
semidilute suspensions of rod-like particles was performed by
Batchelor (1971) and Shaqfeh and Fredrickson (1990). Both
studies predicted a sharp increase of extensional viscosity with
increasing aspect ratio (AR) in good agreement with experi-
mental results (Kizior and Seyer 1974; Mewis and Metzner
1974; Weinberger and Goddard 1974).

In summary, there is a large body of literature dealing with
the elongational flow behavior of polymer solutions or sus-
pensions. Nevertheless, it is still unclear how to independently
control the elongational and shear flow resistances of low
viscosity shear-thinning fluids typically used in numerous
printing and coating operations. Therefore, we present two
different strategies that allow for the variation of the
elongational flow resistance at essentially constant shear
flow properties. The first approach is based on the
observations of Kheirandish et al. (2009) who demonstrated
that increasing the fraction of a crosslinked polymer in a mix-
ture of two otherwise similar alkali swellable emulsion (ASE)
type thickeners leads to a strong increase in the shear relaxa-
tion time, while the elongational time decreases. Therefore,
we varied the amount and mixing ratio of two such commer-
cial acrylic ASE-type thickeners that differ in their density of
hydrophobic association (physical crosslinks) in order to vary
the elongational relaxation time without strongly affecting
shear rheology. The second approach is based on the addition
of plate-like particles with high aspect ratio to a shear-thinning
thickener solution. Prior work on the suspensions of oblate
particles indicated that shear viscosity hardly depends on the
particle concentration at low volume fractions (Santamaría-
Holek and Mendoza 2010; Mueller et al. 2010). Here, we will
demonstrate that in a wide shear rate range, even small
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fractions (φf < 3.5 vol.%) of plate-like particles can lead to a
strong increase in the elongational relaxation time while leav-
ing shear viscosity unchanged.

Elongational flow behavior of the investigated solutions
and suspensions was characterized using CaBER experiments
supported by particle image velocimetry (PIV) in order to
determine the true velocity field within the thinning filament.
Shear flow properties were thoroughly determined to employ
rotational shear and capillary rheometry and oscillatory
squeeze flow, thus covering a broad range of shear rates
(10−2 s−1 < γ̇ < 106 s−1) in a steady flow and a broad range
of frequencies in small amplitude oscillatory shear
(10−2 rad s−1 <ω < 104 rad s−1).

The goal of this paper is to demonstrate how elongational
relaxation time can be controlled without affecting the shear
flow properties for model fluids consisting only of two or
three components but closely resembling the absolute viscos-
ity values and shear-thinning properties, e.g., of waterborne
automotive coatings. To confirm the technical relevance of
these investigations, we also present results for automotive
basecoats including various amounts of aluminum flakes.

Material

Aqueous solutions of Sterocoll® HT and Sterocoll® XT
(BASF SE, Ludwigshafen, Germany) were investigated.
These commercial thickeners are provided as alkali-
soluble dispersions made via emulsion polymerization.
The solids content of the provided Sterocoll HT dispersion
is 40 wt.%, Sterocoll XT was delivered with a solids con-
tent of 26 wt.%, and both dispersions show a pH of ap-
proximately 3. Both thickeners are copolymers including
ethyl acrylate and carboxylic acids. Both types of thick-
eners are characterized by intra- and intermolecular aggre-
gation due to the random occurrence of hydrophobic seg-
ments along the polymer backbone. This gives rise to their
unique flow properties (Kheirandish et al. 2008, 2009).
The two polymers differ in the fraction of the hydrophobic
monomer, which is higher for Sterocoll HT than for
Sterocoll XT. Consequently, the density of intra- and inter-
molecular hydrophobic associations is higher for Sterocoll
HT and these molecules are more stiff and less flexible in
solution than the molecules of Sterocoll XT. Stock solu-
tions were prepared by diluting Sterocoll HT and Sterocoll
XT dispersions to 2.3 wt.% and 1.4 wt.%, respectively,
with distilled water and 1 M NaOH, which was added in
order to adjust the solution to pH 8. During titration, the
weak acrylic or methacrylic acid groups start dissociating,
resulting in the formation of highly viscous, transparent
polymer solutions. These stock solutions were stirred for
1 h and diluted to the desired concentrations or mixed with
each other as summarized in Table 1.

Glass flakes of Luxan CFX C001 (Eckart GmbH,
Hartenstein, Germany) were dispersed into the mixed
Sterocoll solution S3 at different volume fractions φf = 0.6,
1.3, 2.0, and 3.5 vol.%. Moreover, we have dispersed alumi-
num flakes Alu-Stapa Hydrolux 600 (Eckart GmbH,
Hartenstein, Germany) into an industrial waterborne basecoat
provided by BASF Coatings GmbH (Münster, Germany) at
volume fractions φf = 1.0, 2.0, and 3.0 vol.%. The geometric
dimensions of the particles are shown in Table 2.

Experimental methods

Rheological characterization

Rotational rheometry measurements were performed using a
HAAKE MARS II instrument (Thermo Fischer Scientific,
Karlsruhe, Germany) equipped with a DIN-Z20 coaxial cyl-
inder system. Steady shear flow curves were determined by
performing controlled shear stress tests (τ = 0.2–200 Pa) for
Sterocoll mixtures and controlled shear rate tests (γ̇ = 0.1–
1000 s−1) for the automotive waterborne basecoat. Small am-
plitude oscillatory shear (SAOS) experiments were performed
at a constant shear stress amplitude of τ0 = 0.1 Pa in the fre-
quency range fromω = 0.01 to 10 rad s−1. For all of the mea-
surements, the temperature was adjusted to T = 20 °C.

A home-built piston-driven capillary rheometer equipped
with a circular die (radius rcap = 0.25 mm, length lcap =
40 mm) was used to cover the shear rate range of 3·102 s−1

< γ̇ < 3·105 s−1. The shear rate is calculated from the
preselected volumetric flow rate V̇ and shear stress is obtained
from the resulting pressure drop Δp recorded with aM30-6-H-
B01C-4-4-02130X000X00 transducer (Gefran S.p.a.,
Provaglio d’Iseo, Italy). These experiments were performed
at 25 °C.

Table 1 Composition of Sterocoll mixtures

Designation c (Sterocoll HT)/wt.% c (Sterocoll XT)/wt.%

S1 2.3 0

S2 2.0 0.15

S3 1.8 0.22

S4 1.7 0.3

S5 1.6 0.4

Table 2 Geometric dimensions of particles

Type of particle d10/
μm

d50/
μm

d90/
μm

AR

Glass flakes 10–20 25–35 55–65 25

Aluminum flakes 5 15 33 90
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The storage and loss modulus data at high frequencies be-
tween 101 rad s−1 <ω < 104 rad s−1 were obtained using os-
cillatory squeeze flow rheometry employing a so-called
Piezoelectric Axial Vibrator (PAV) (Crassous et al. 2005).
The sample is placed in the gap with a height hPAV = 31 μm
between two steel plates 20 mm in diameter. A dynamic
squeeze flow is excited by four piezoelectric transducers that
are attached to the copper tube glued to the lower plate. The
response signal is received by four other piezo elements.
Finally, G′ and G″ are calculated from the corresponding sig-
nal amplitude and phase shift data.

Elongational flow behavior was characterized using a
Haake CaBER 1 instrument (Thermo Fischer Scientific,
Karlsruhe, Germany). Here, the sample is placed between
two parallel plates with a diameterD = 6 mm. The upper plate
was displaced from the initial height of the gap hi = 2 mm to
the final height hf = 10 mm within a strike time of ts = 40 ms.
The strain rate ε̇ was determined from the time-dependent
decrease of the diameter D(t) as follows (McKinley and
Tripathi 2000):

ε˙ ¼ −
2

D tð Þ
dD tð Þ
dt

ð1Þ

Elongational deformation at the midpoint of the filament
can be considered as purely uniaxial. Using the FENE dumb-
bell model for dilute polymer solutions, Entov and Hinch
(1997) analyzed the nonlinear dynamics and determined an
exponential decay of the filament diameter in the elasto-
capillary regime. In this type of capillary thinning,
elongational relaxation time λe is related to the constant strain
rate according to:

λe ¼ 2

3ε̇
ð2Þ

The CaBER device used here is equipped with a high-
speed camera Fastcam 1024 PCI (Photron, Tokyo, Japan), a
telecentric objective and a telecentric backlight illumination
(Niedzwiedz et al. 2009). The images were recorded with a
frame rate of 1000 fps at a resolution of 1024 × 1024 pixels.
This enabled us to analyze the shape of the necking thread and
to accurately monitor diameter decay during the filament thin-
ning. These experiments were performed at ambient
temperature.

Particle image velocimetry

To visualize the true velocity field during capillary thinning,
PIV measurements were performed in a horizontally stretched
filament (Recktenwald et al. 2019). Therefore, we added
0.01 wt.% of fluorescent green polystyrene particles
(Banglabs Inc., Fishers, USA) with a diameter of 0.96 μm to
the acrylic thickener solutions including glass flakes with the

excitation and emission wavelength of 480 nm and 520 nm,
respectively. The filament stretching device is similar to the
tilted CaBER (Sachsenheimer et al. 2012). The sample was
placed between two plates with D = 4 mm and stretched hor-
izontally from hi = 1 mm to hf = 4 mm within ts = 500 ms.
Particle flow was observed using an inverted fluorescence
microscope AxioObserver D (Carl Zeiss AG, Jena,
Germany) equipped with a sCMOS Zyla X camera (Andor
Technology Ltd., Belfast, Northern Ireland, 2048 × 2048
pixels, up to 50 fps) and a long working distance lens Nikon
LU-Plan (Nikon Corporation, Tokyo, Japan, 20X, NA = 0.4).
The particles were illuminated using a constant LED light
source Colibri (Carl Zeiss AG, Jena, Germany, 470 nm).
Since it takes several seconds to stretch the filament and de-
termine the correct focus, it was not possible to perform the
measurements for the samples described above. Instead, we
prepared another Sterocoll suspension S6 with 1.0 wt.%
Sterocoll HTand 1.0 wt.% Sterocoll XT including glass flakes
with φf = 0.6 vol.% and 3.5 vol.%, respectively. The lifetime
of these samples during capillary thinning was approximately
30 s and the flow field was analyzed with an open-source PIV
software (Thielicke and Stamhuis 2014).

Results and discussion

Approach 1: mixture of acrylic thickeners differing
in their degree of hydrophobic association

This approach is based on the fact that two acrylic thickeners
differ in the fraction of copolymerized ethyl acrylate and car-
boxylic acids and hence in their degree of hydrophobic asso-
ciation. Sterocoll HT exhibits more intra- and intermolecular
associations, thus forming a highly elastic gel with an extend-
ed shear relaxation time, but the hardly deformable molecules
show little resistance to elongational deformation. By contrast,
Sterocoll XT includes a lower fraction of the hydrophobic
monomer and hence less internal associations. These mole-
cules are more flexible and provide extended lifetimes during
uniaxial filament thinning.

The shear viscosity of these thickeners at various concen-
trations in neutralized aqueous solutions as a function of shear
rate is shown in Fig. 1. The flow curves of the pure Sterocoll
HT solutions closely resemble the characteristic degree of
shear thinning and the high shear viscosity level typically
observed in automotive waterborne basecoats. Similar to the
commercial basecoats, the flow curves of the Sterocoll HT
solutions do not approach a limiting zero shear viscosity in
the investigated shear rate range and apparent yield stress τy ≈
2 Pa can be estimated that increases weakly with Sterocoll HT
concentration. The pronounced shear-thinning behavior is at-
tributed to the breakup of the hydrophobic aggregates due to
the applied shear stress. A decrease in the polymer
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concentration leads to a weak decrease in shear viscosity that
is slightly more pronounced at low shear rates than at high
shear rates. By contrast, the flow curves of the investigated
Sterocoll XT solutions approach zero shear viscosity at shear
rates γ̇ < 1 s−1 and shear thinning is less pronounced than for
Sterocoll HT, because Sterocoll XT exhibits fewer hydropho-
bic intermolecular associations, i.e., the effective molecular
weight is lower than for Sterocoll HT. The zero shear viscosity
scales linearly with thickener concentration indicating that
these solutions are in the dilute regime (Rubinstein and
Colby 2003).

Next, we have studied the Sterocoll mixtures listed in
Table 1. We mixed both types of thickeners such that
Sterocoll HT in the ascending order of concentration was
combined with Sterocoll XT in the descending order. As dem-
onstrated in Fig. 2, all of the mixtures show similar shear
viscosity for a broad range of shear rates. In particular, for
the shear rates γ̇ > 103 s−1, the absolute values are almost
independent of sample composition. In this shear rate range,
solution viscosity is mostly determined by stress relaxation of
the short-chain segments and hence, depends mainly on

polymer concentration that is essentially constant for this se-
ries of samples. Gel content or physical crosslinking is rele-
vant at low shear rates or frequencies. This is confirmed by the
shear modulus data displayed in Fig. 3, where different visco-
elastic properties can be observed in the low frequencies re-
gime ω < 10−1 rad s−1. Samples with a higher content of
Sterocoll HT show larger characteristic relaxation time λs,
defined as the inverse of the angular frequency ωc at which
G′ = G″, indicating that the average apparentmolecular weight
increases with increasing Sterocoll HT fraction in the mixtures
due to the increasing number of intermolecular hydrophobic
associations. However, at the angular frequency ω >
10 rad s−1, G′ and G″ converge and further increase according
to the power-law G′ ≈G″ ~ ω0.47. This exponent is clearly
lower than the value expected from the Zimmmodel for poly-
mers in a good solvent and may be a consequence of the
hydrophobic associations.

Elongational flow properties of the Sterocoll mixtures were
characterized using the CaBERmethod. The time evolution of
the normalized filament diameter is shown in Fig. 4. While the
shape of the curves is essentially the same for all samples,
increasing the fraction of Sterocoll XT in the solution leads

Fig. 1 Shear viscosity η as a
function of shear rate γ̇ for
aqueous thickener solutions with
different concentration of a
Sterocoll HT and b Sterocoll XT.
Insert in a yield stress τy vs.
concentration of Sterocoll HT
(SHT) and b zero shear viscosity
η0 vs. concentration of Sterocoll
XT (SXT)

Fig. 2 Shear viscosity η as a function of shear rate γ̇ for Sterocoll
mixtures S1–S5 as determined using rotational rheometry and capillary
rheometry

Fig. 3 Storagemodulus G′ and loss modulusG″ vs. angular frequency for
Sterocoll mixtures
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to an increase in the breakup time from tbreakup = 0.075 s for
sample S1 to tbreakup = 1.55 s for sample S5. Figure 5 shows
the corresponding strain rate plotted against the filament thin-
ning time. All of the samples exhibit an exponential decay of
D(t), and correspondingly a constant strain rate varying be-
tween ε̇ = 2 s−1 for S5 and ε̇ = 50 s−1 for S1 over an extended
period of time. Accordingly, in this elasto-capillary regime in
which surface tension is balanced by elastic stresses, filament
thinning is characterized by a single relaxation time λe that is
calculated according to Eq. (2). This elasto-capillary thinning
is followed by a terminal regime in which the filament diam-
eter decays rapidly due to the finite extensibility of the poly-
mer chains. We cannot determine a steady-state extensional
viscosity for such weakly viscoelastic systems. Therefore, we
characterize their elongational flow resistance in terms of λe.

The shear and elongational relaxation time data for all of
the Sterocoll mixtures are collected in Fig. 6. It is observed
that an increase in the amount of Sterocoll XT leads to an
increase in the elongational relaxation time λe by almost two
orders of magnitude. At the same time, λs, which is several

orders of magnitude higher than λe, decreases by approxi-
mately an order of magnitude, because the fraction of
Sterocoll HT in the mixtures decreases. The low ratio λe/λs
is attributed to the intermolecular aggregates resulting from
attractive interactions among the hydrophobic chain segments
that cannot withstand the strong elongational flow. The strong
increase in λe with increasing fraction of Sterocoll XT is ra-
tionalized as follows: polymer molecules with strong
intrachain hydrophobic attraction such as Sterocoll HT can
hardly deform or transmit tensile stresses, and hence do not
contribute much to the elongational flow resistance. This is
different for linear chains of molecules with only few
intrachain hydrophobic associations such as Sterocoll XT.
These molecules strongly deform in elongational flow and
consequently λe increases with increasing fraction of
Sterocoll XT in the solutions. Similar differences in the re-
sponse to elongational deformation have been observed earlier
by comparing the extensional viscosity of the solutions in-
cluding various linear flexible polymers to the solutions of
rigid molecules (Dexter 1996; Stelter et al. 2002) and partic-
ularly by Kheirandish et al. (2008, 2009) who investigated the
shear and elongational relaxation times of similar ASE-type
acrylic thickeners.

In summary, we have designed a series of aqueous solu-
tions with different mixing ratios of two ASE-type acrylic
thickeners differing in the fraction of copolymerized hydro-
phobic monomers, and hence the degree of inter- and
intrachain hydrophobic association also known as physical
crosslinks. These mixtures show pronounced shear thinning
that is typical for many industrial coatings and exhibit es-
sentially the same shear viscosity values particularly at high
shear rates relevant for industrial coating operations. This
model system is ideally suited to study the effect of
elongational flow resistance on atomization, jetting, or dis-
pensing of technical coating, ink, or adhesive formulations
(Oswald et al. 2019).

Fig. 5 Strain rate ε̇ according to Eq. (1) vs. filament thinning time for
Sterocoll mixtures S1–S5

Fig. 4 Filament diameter D(t) normalized by its initial value D(0)
immediately after the piston has reached its final position hf vs. filament
thinning time for Sterocoll mixtures S1–S5 Fig. 6 Elongational relaxation time λe of the Sterocoll mixtures S1–S5.

Inset, shear relaxation time λs for these Sterocoll mixtures
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Approach 2: adding a small amount of plate-like
particles to highly shear-thinning thickener solutions

A small amount of non-Brownian, strong anisotropic rod-like
particles suspended in Newtonian fluids causes high tensile
stresses during uniaxial extensional flows, whereas the resis-
tance to shear flows is hardly affected (Weinberger and
Goddard 1974). Here, we discuss how plate-like particles
added to shear thinning, viscoelastic fluids alter the shear
and elongational flow behavior. These oblate particles hardly
affect shear viscosity as shown in an example illustrated in
Fig. 7 for different suspensions of glass flakes with AR ≈ 25
in thickener solution S3. This is expected based on the gener-
alized Einstein relation for the relative viscosity ηr of dilute
suspensions including non-Brownian, hard anisotropic parti-
cles (Pabst et al. 2006):

ηsuspension
ηsolvent

¼ 1þ η½ �φ: ð3Þ

Inserting the intrinsic viscosity [η] = 3.13 calculated by
Hinch and Leal (1972) for oblate particles with high aspect
ratio and for high rotary Peclet number (here Per > 1010) leads
to ηr = 1.11 for φf = 3.5 vol.%, which is in good agreement
with our results at any given shear rate. A similar weak de-
pendence of shear viscosity on φ was already observed for
aqueous suspension containing 5.0 vol.% of plate-like kaolin
particles with AR = 12 (Jogun and Zukoski 1996). Next, we
discuss the elongational flow behavior of the glass flake sus-
pension introduced above based on the CaBER experiments.

Generally, evaluation of CaBER data assumes a constant
velocity within the filament cross-section and a velocity gra-
dient in the axial direction. To check this assumption, we
determined the true velocity field in a horizontally thinning
filament of thickener solutions with different volume fractions

of glass flakes using PIV. For these measurements, a Sterocoll
mixture S6 consisting of 1.0 wt.% Sterocoll HT and 1.0 wt.%
Sterocoll XT was used and exhibited a breakup time of ap-
proximately 30 s, which is sufficiently long to perform PIV.
Figure 8 shows the axial velocity field for the thickener solu-
tion S6 including 0.6 vol.% and 3.5 vol.% glass flakes a few
seconds after filament stretchingwas started. This corresponds
to the elasto-capillary regime in which λe is determined. The
filament diameter D(t) is still much larger than the geometrical
dimensions of the suspended flakes. The focus could not be
adjusted exactly to the stagnation point and thus, only positive
axial velocity values are detected. Both filaments show almost
constant axial velocity across the diameter. From this, we can
conclude that the filament thinning follows a uniaxial exten-
sion, and no flow heterogeneities or instabilities occur during
the capillary thinning of these suspensions as reported recently
for dilute surfactant and biopolymer solutions (Recktenwald
et al. 2019). The flakes apparently do not disturb the uniaxial
extensional thinning as long as the filament is much larger
than the flake dimension.

Figure 9 shows the time evolution of the filament diameter
during the capillary thinning of S3-based suspensions with
different amounts of glass flakes. An increase in the volume
fraction of glass flakes results in a substantial increase in the
filament breakup time. Again, a distinct elasto-capillary-
thinning regime occurred for all of the investigated suspen-
sions and the slope of the normalized D(t) curve decreases
with increasing fraction of glass flakes, i.e., these particles
slow down the thinning process. The strain rate drops from
ε̇ = 22 s−1 for pure S3 to ε̇ = 5 s−1 for the suspension includ-
ing 3.5 vol.% glass flakes. Correspondingly, the characteristic
elongational relaxation time λe increases from 31 ms to
131 ms. In all cases, the elasto-capillary thinning is followed
by a terminal regime characterized by rapid decay of the fila-
ment diameterD(t). It should be noted that similar results, i.e.,
no effect of the suspended glass flakes on shear viscosity but a
strong increase in the filament lifetime tbreakup with φf were
also found for the suspensions of the glass flakes in the
Newtonian solvent glycerol. The corresponding data shown
in Fig. 10 reveal an exponential scaling of tbreakup with increas-
ing φf irrespective of the chosen solvent. However, the in-
crease is slightly weaker when the flakes are suspended in
glycerol instead of the acrylic thickener solution S3. Utracki
and Lara (1984) studied the effect of the mica flakes with
AR = 35 suspended in a high-density polyethylene (HDPE)
melt on extensional viscosity. Similar to the findings of the
present study, an increase in the flake volume fraction up to
10 vol.% resulted in an increase in the extensional viscosity by
approximately one order of magnitude compared with the
pure polymer. Theoretical work of Brenner (1974) demon-
strated that the intrinsic extensional viscosity [ηe] increases
with increasing aspect ratio. Batchelor (1971) considered the

Fig. 7 Shear viscosity η as a function of shear rate γ̇ for a suspension of
glass flakes in S3 differing in particle volume fraction φf
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extensional viscosity in the semidilute regime for suspensions
of rod-like particles in Newtonian fluids and found a more
pronounced increase in the hydrodynamic stress in
elongational flow than in shear flow. Weinberger and
Goddard (1974) reported an order of magnitude increase in
tensile stress when 1.3 vol.% of glass fibers with AR = 1/57
were added to a silicon oil and a polybutene solution, while
shear viscosity increased by less than 10%. To summarize, in
accordance with theoretical considerations for anisotropic par-
ticles suspended in Newtonian fluids (Batchelor 1971; Hinch
and Leal 1972; Brenner 1974) and experimental work on fiber
suspensions in Newtonian fluids (Weinberger and Goddard
1974) and flakes suspended in polymer melts (Utracki and
Lara 1984), our experimental data show that adding small
fractions of plate-like particles to low viscosity, shear-
thinning fluids can be used to modify their elongational flow
resistance at essentially constant shear viscosity.

To provide evidence that this second approach of control-
ling elongational flow behavior independently from shear vis-
cosity is also valid for complex, commercial fluids, experi-
ments were performed employing waterborne automotive
basecoats including different fractions of aluminum flakes.
From Fig. 11, we observed that shear viscosity is hardly af-
fected by the added aluminum flakes. Only the sample with
3.0 vol.% particles exhibits a lower viscosity at shear rates γ̇
< 1 s−1 and in the shear rate range between 103 γ̇ < 105 s−1.
Thismay be attributed to specific interactions of the aluminum
particles with at least one of the components of this proprie-
tary multicomponent coating mixture. Our results are largely
in agreement with our expectation for dilute suspensions of
anisotropic particles in Newtonian fluids. Based on Eq. (3),
relative viscosity ηr = 1.09 is estimated for the basecoat

Fig. 9 Filament diameter D(t) normalized by its initial value D(0)
immediately after the piston has reached its final position hf vs. filament
thinning time for suspensions with different particle concentration φf

Fig. 10 Filament breakup time tbreakup vs. volume fraction φf of
suspended glass flakes for acrylic thickener solution S3 (black squares)
and glycerol (red circles). Dashed lines correspond to an exponential
approach of the data

Fig. 8 Velocity vz as a function of
the axial position z and radial
position r for a S6 with 0.6 vol.%
glass flakes after 3.8 s and b S6
with 3.5 vol.% glass flakes after
5 s
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including 3.0 vol.% aluminum flakes, again using [η] = 3.13
for plate-like particles with AR ≫ 1 at high rotary Peclet
numbers.

The results of the CaBER experiments on the waterborne
basecoats are plotted in Fig. 12. Again, an elasto-capillary
thinning regime is observed followed by a terminal regime
with a rapid diameter decay. A small increase in the particle
volume fraction leads to pronounced deceleration of capillary
thinning. Comparing the sample with 3.0 vol.% aluminum
flakes to the one without flakes, we observe a 2.5-fold increase
of the capillary breakup time corresponding to a drop of the
strain rate from ε̇ = 26 s−1 to ε̇ = 10 s−1 and hence, the
elongational relaxation time increases from λe = 26 ms to
λe = 66 ms.

In conclusion, this second approach of controlling the
elongational flow behavior without affecting shear viscosity

by introducing a small amount of plate-like particles is also
valid for an industrially used waterborne basecoat. Figure 13
shows the elongational relaxation time plotted vs. the volume
fraction of the flakes for the acrylic thickener solution and for
the waterborne basecoat. For both materials, we find an expo-
nential increase of λe with the particle volume fraction φf

according to:

λe ¼ A:exp B:φ f

� �
ð4Þ

The corresponding fit parameters are summarized in
Table 3. However, this exponential increase is less pro-
nounced for the aluminum flakes than for the glass flakes
despite the much lower aspect ratio of the latter. In light of
Batchelor’s (1971) calculations for rod-like particles, a stron-
ger increase of the elongational flow resistance is expected
when particles with higher aspect ratio are suspended. This
is clearly not true here and we speculate that the effect of the
aluminum flakes on the elongational flow behavior of the
automotive basecoat is weakened by the complex interactions
with different solvents, surfactants, and rheology modifiers
included in this multicomponent fluid. We could not compare
the effect of both flake types in a single solvent, because we
were not able to create stable homogeneous suspensions of
aluminum flakes in the acrylic thickener solutions or a stable
suspension of glass flakes in the automotive basecoat.

Summary and conclusion

Control of the shear and elongational viscosities of complex
fluids independently of each other in order to meet different

Fig. 13 Elongational relaxation time λe vs. volume fraction φf of
suspended flakes for thickener solution S3 (black squares) and
waterborne automotive basecoat (red circles). Dashed lines correspond
to an exponential fit according to Eq. (4)

Fig. 11 Shear viscosity η as a function of shear rate γ̇ for waterborne
automotive basecoats including different concentrations of aluminum
flakes. Closed symbols refer to data from rotational rheometry, open
symbols correspond to capillary rheometry data

Fig. 12 Filament diameter D(t) normalized by its initial value D(0)
immediately after the piston has reached its final position hf vs. filament
thinning time for waterborne automotive basecoats with different
concentration of aluminum flakes
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demands during manufacturing or application, e.g., of coat-
ings or adhesives is still a profound technological challenge.

In this study, we present two approaches that allow for a
large variation of the elongational relaxation time at an almost
constant shear viscosity for technically relevant shear-thinning
fluids. One way to achieve this objective is to mix a rigid
polymer with a small amount of a more flexible polymer.
We used two industrial ASE-type acrylic thickeners, namely,
Sterocoll® HT and Sterocoll® XT. Due to a larger number of
inter- and intramolecular hydrophobic associations, Sterocoll
HT chains or aggregates are much more rigid than the
Sterocoll XT molecules. Adding a small fraction of flexible
Sterocoll XT to Sterocoll HT leads to a decrease in the longest
shear relaxation time, whereas the steady shear viscosity is
unaffected, particularly at the high shear rates relevant for
many technical processes and coating operations. However,
the flexible chains strongly deform in elongational flow and
hence, the elongational relaxation time can be increased from
λe = 12.5 ms for the pure solution including 2.3 wt.%
Sterocoll HT up to λe = 420 ms for the mixture containing
1.6 wt.% Sterocoll HT and 0.4 wt.% Sterocoll XT.

The second approach is based on the phenomenon that
suspensions of anisotropic particles in Newtonian fluids ex-
hibit higher resistance to imposed elongational deformation
than to shear deformation (Batchelor 1971; Shaqfeh and
Fredrickson 1990). This encouraged us to add small amounts
of plate-like particles into a shear-thinning acrylic thickener
solution and a commercial coating formulation. Increasing the
volume fraction of glass flakes up to 3.5 vol.% in the acrylic
thickener solution S3 resulted in a 4-fold increase of the
elongational relaxation time without significantly affecting
the shear flow properties. Similar results were also found for
industrial automotive waterborne basecoats including alumi-
num flakes, and in both cases, λe increases exponentially with
increasing flake concentration.

PIV revealed uniform uniaxial thinning across the filament
diameter during the CaBER experiments on the suspensions
of glass flakes in shear-thinning acrylic thickener solutions.
This confirms that the delayed capillary thinning is not due to
heterogeneous flow or even flow instabilities, but rather is due
to the alignment of the plate-like particles.

Technological processes such as atomization, spraying,
curtain and blade coating, or inkjet and screen printing, all
include elongational deformation of the processed fluids.
Rational improvement of these processes or the processed
materials may benefit from our investigations regarding the
control of the elongational flow resistance at a constant shear

viscosity. The model system introduced here can be used for
systematic studies of how the elongational flow resistance of
the processed fluids affects these printing or coating opera-
tions. Further systematic investigations regarding the depen-
dence of the elongational viscosity on the aspect ratio and
volume fraction for the suspensions including oblate particles
may be stimulated. To date, rheological research was focused
on suspensions containing rods or fibers. Plate-like particle
suspensions, however, are relevant not only for achieving me-
tallic or pearlescent effects in coatings but also for processing
clay minerals or composite materials with high thermal or
electrical conductivity.
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