12 research outputs found

    Determination of cis-permethrin, trans-permethrin and associated metabolites in rat blood and organs by gas chromatography–ion trap mass spectrometry

    No full text
    International audienceAn analytical method was developed to measure cis-permethrin and trans-permethrin in different biological rat matrices and fluids (whole blood, red blood cells, plasma, brain, liver, muscle, testes, kidneys, fat and faeces). The method was also suitable for the simultaneous quantification of their associated metabolites [cis-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (trans-DCCA) and 3-phenoxybenzoic acid (3-PBA)] in blood (whole blood, red blood cells, plasma) and liver. The target analytes were derivatised in samples using a methanolic/hydrochloric acid solution and then extracted with toluene. The analysis was performed by gas chromatography, and detection using ion trap tandem mass spectrometry. The selectivity obtained for complex matrices such as rat organs allowed the use of a purification step to be avoided for most of the matrices investigated. In the case of fat, where permethrin is suspected to accumulate, a dedicated purification step was developed. In fluids, the limits of quantification were at the 50 ng/mL level for the parent compounds and 3-PBA and at 25 ng/mL for cis-DCCA and trans-DCCA. For solid matrices excluding fat, the limits of quantification ranged from 50 ng/g for muscle to 100 ng/g for brain and testes for both cis-permethrin and trans-permethrin. The extraction recoveries ranged primarily between 80 and 120 % for the matrix tested. The stability of blood samples was tested through the addition of 1 % v/v formic acid. The methods developed were applied in a toxicokinetic study in adult rats. cis-Permethrin and the metabolites were detected in all corresponding matrices, whereas trans-permethrin was detected only in blood, plasma and faeces

    In vitro human metabolism of permethrin isomers alone or as a mixture and the formation of the major metabolites in cryopreserved primary hepatocytes

    No full text
    In vitro metabolism of permethrin, a pyrethroid insecticide, was assessed in primary human hepatocytes. In vitro kinetic experiments were performed to estimate the Michaelis-Menten parameters and the clearances or formation rates of the permethrin isomers (cis- and trans-) and three metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA) and 3-phenoxybenzoic acid (3-PBA). Non-specific binding and the activity of the enzymes involved in permethrin's metabolism (cytochromes P450 and carboxylesterases) were quantified. Trans-permethrin was cleared more rapidly than cis-permethrin with a 2.6-factor (25.7 +/- 0.6 and 10.1 +/- 0.3 mu L/min/10(6) cells respectively). A 3-factor was observed between the formation rates of DCCA and 3-PBA obtained from trans- and cis-permethrin. For both isomers, the rate of formation of DCCA was higher than the one of 3-PBA. The metabolism of the isomers in mixture was also quantified. The co-incubation of isomers at different ratios showed the low inhibitory Potential of cis- and trans-permethrin on each other. The estimates of the clearances and the formation rates in the co-incubation condition did not differ from the estimates obtained with a separate incubation. These metabolic parameters may be integrated in physiologically based pharmacokinetic (PBPK) models to predict the fate of permethrin and metabolites in the human body

    PBPK modeling of the cis- and trans-permethrin isomers and their major urinary metabolites in rats

    No full text
    International audiencePermethrin, a pyrethroid insecticide, is suspected to induce neuronal and hormonal disturbances in humans. The widespread exposure of the populations has been confirmed by the detection of the urinary metabolites of permethrin in biomonitoring studies. Permethrin is a chiral molecule presenting two forms, the cis and the trans isomers. Because in vitro studies indicated a metabolic interaction between the trans and cis isomers of permethrin, we adapted and calibrated a PBPK model for trans- and cis-permethrin separately in rats. The model also describes the toxicokinetics of three urinary metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA), 3-phenoxybenzoic acid (3-PBA) and 4â€ČOH-phenoxybenzoic acid (4â€Č-OH-PBA). In vivo experiments performed in Sprague–Dawley rats were used to calibrate the PBPK model in a Bayesian framework. The model captured well the toxicokinetics of permethrin isomers and their metabolites including the rapid absorption, the accumulation in fat, the extensive metabolism of the parent compounds, and the rapid elimination of metabolites in urine. Average hepatic clearances in rats were estimated to be 2.4 and 5.7 L/h/kg for cis- and trans-permethrin, respectively. High concentrations of the metabolite 4â€Č-OH-PBA were measured in urine compared to cis- and trans-DCCA and 3-PBA. The confidence in the extended PBPK model was then confirmed by good predictions of published experimental data obtained using the isomers mixture. The extended PBPK model could be extrapolated to humans to predict the internal dose of exposure to permethrin from biomonitoring data in urine

    Impact of domestic mould exposure on Aspergillus biomarkers and lung function in patients with chronic obstructive pulmonary disease

    No full text
    International audiencePatients with chronic obstructive pulmonary disease (COPD) are frequently colonised or sensitised by Aspergillus, but clinical significance remains unclear. Furthermore, little is known on the impact of indoor mould exposure during COPD. In this study, we assessed the relationship between domestic mould exposure, Aspergillus biomarkers and COPD severity during acute exacerbation and at stable state. Aspergillus section Fumigati culture in sputum and anti-Aspergillus antibodies detection (IgG and precipitins) were followed up in COPD patients that were prospectively recruited during exacerbation (n = 62), and underwent a visit at stable state after 18 months (n = 33). Clinical characteristics were collected at inclusion. Electrostatic dust collectors (EDCs) were used to measure domestic mould contamination. Aspergillus section Fumigati was more frequently detected during exacerbation (16.9%) than at stable state (4.0%), but the frequency of patients presenting with anti-Aspergillus antibodies was similar (32.2% and 33.3%, respectively). Aspergillus section Fumigati detection was associated with a higher body-mass index (BMI) during exacerbation, whereas patients with anti-Aspergillus antibodies presented a lower BMI and forced expiratory volume in 1 s, as well as a higher frequency of inhaled corticoids and higher total mould and Penicillium exposure at final visit (P 30 CFU/cm2 (P = 0.03). Aspergillosis was diagnosed in 2 patients (6.1%) who presented increased levels of antibodies. Our data suggest that anti-Aspergillus antibodies are associated with chronic lung function alteration and/or domestic mould exposure, thereby supporting the consideration of indoor mould contamination and anti-Aspergillus antibodies kinetics in COPD management

    Use of Endogenous Biomarkers to Guide OATP1B Drug-Drug Interaction Risk Assessment: Evaluation by the Pharmaceutical Industry

    No full text
    Drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial and clinically relevant, however challenges remain for predicting these DDIs using in vitro inhibition data. Emerging evidence suggests the use of endogenous biomarkers, particularly coproporphyrin-I (CP-I), as selective markers of in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at establishing the relationship between changes in CP-I exposure and substrate drug exposure following clinical OATP1B inhibition. Additionally, we evaluated static models to predict changes in exposure of CP-I, as a selective OATP1B endogenous substrate. Literature and proprietary data related to clinical OATP1B biomarkers along with pertinent in vitro and clinical DDI information were collected to identify clinical DDIs via primarily OATP1B inhibition and assess the relationship between substrate drug and CP-I exposure changes. Significant correlations were observed between CP-I area-under-the-curve ratio (AUCR) or maximum concentration ratio (CmaxR) and AUCR of substrate drugs. CP-I AUCR and CmaxR of <1.25 was associated with negative OATP1B-mediated DDIs (AUCR <1.25) with no false negative predictions observed while applying both criteria. CP-I AUCR of <1.5 and CmaxR of <2 was associated with OATP1B-mediated DDIs with AUCR <2. A correlation was identified between CP-I exposure changes and OATP1B1 static DDI predictions. Recommendations for collecting and interpreting CP-I data are described, including a decision tree for guiding DDI risk assessment. Measurement of CP-I is considered sufficient for evaluation of in vivo OATP1B inhibition potential
    corecore