2,907 research outputs found
Two cheers for the urban white paper
In November 2000, the government finally published its Urban White Paper. Our Towns and Cities: The Future appeared over a year after the Rogers’ Urban Task Force report, to which it provided an indirect official response, and no less than 23 years after the last such statement of government urban policy
A Degenerate Bose-Fermi Mixture of Metastable Atoms
We report the observation of simultaneous quantum degeneracy in a dilute
gaseous Bose-Fermi mixture of metastable atoms. Sympathetic cooling of helium-3
(fermion) by helium-4 (boson), both in the lowest triplet state, allows us to
produce ensembles containing more than 10^6 atoms of each isotope at
temperatures below 1 micro-Kelvin, and achieve a fermionic degeneracy parameter
of T/Tf=0.45. Due to their high internal energy, the detection of individual
metastable atoms with sub-nanosecond time resolution is possible, permitting
the study of bosonic and fermionic quantum gases with unprecedented precision.
This may lead to metastable helium becoming the mainstay of quantum atom
optics.Comment: 4 pages, 3 figures submitted to PR
Focusing of Intense Subpicosecond Laser Pulses in Wedge Targets
Two dimensional particle-in-cell simulations characterizing the interaction
of ultraintense short pulse lasers in the range 10^{18} \leq I \leq 10^{20}
W/cm^{2} with converging target geometries are presented. Seeking to examine
intensity amplification in high-power laser systems, where focal spots are
typically non-diffraction limited, we describe key dynamical features as the
injected laser intensity and convergence angle of the target are systematically
varied. We find that laser pulses are focused down to a wavelength with the
peak intensity amplified by an order of magnitude beyond its vacuum value, and
develop a simple model for how the peak location moves back towards the
injection plane over time. This performance is sustained over hundreds of
femtoseconds and scales to laser intensities beyond 10^{20} W/cm^{2} at 1 \mu m
wavelength.Comment: 5 pages, 6 figures, accepted for publication in Physics of Plasma
Testing linear hypotheses in high-dimensional regressions
For a multivariate linear model, Wilk's likelihood ratio test (LRT)
constitutes one of the cornerstone tools. However, the computation of its
quantiles under the null or the alternative requires complex analytic
approximations and more importantly, these distributional approximations are
feasible only for moderate dimension of the dependent variable, say .
On the other hand, assuming that the data dimension as well as the number
of regression variables are fixed while the sample size grows, several
asymptotic approximations are proposed in the literature for Wilk's \bLa
including the widely used chi-square approximation. In this paper, we consider
necessary modifications to Wilk's test in a high-dimensional context,
specifically assuming a high data dimension and a large sample size .
Based on recent random matrix theory, the correction we propose to Wilk's test
is asymptotically Gaussian under the null and simulations demonstrate that the
corrected LRT has very satisfactory size and power, surely in the large and
large context, but also for moderately large data dimensions like or
. As a byproduct, we give a reason explaining why the standard chi-square
approximation fails for high-dimensional data. We also introduce a new
procedure for the classical multiple sample significance test in MANOVA which
is valid for high-dimensional data.Comment: Accepted 02/2012 for publication in "Statistics". 20 pages, 2 pages
and 2 table
A new regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma
It is shown that penetration of relativistically intense laser light into an
overdense plasma, accessible by self-induced transparency, occurs over a finite
length only. The penetration length depends crucially on the overdense plasma
parameter and increases with increasing incident intensity after exceeding the
threshold for self-induced transparency. Exact analytical solutions describing
the plasma-field distributions are presented.Comment: 6 pages, 2 figures in 2 separate eps files; submitted to JETP Letter
Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions
Two scenarios for the penetration of relativistically intense laser radiation
into an overdense plasma, accessible by self-induced transparency, are
presented. For supercritical densities less than 1.5 times the critical one,
penetration of laser energy occurs by soliton-like structures moving into the
plasma. At higher background densities laser light penetrates over a finite
length only, that increases with the incident intensity. In this regime
plasma-field structures represent alternating electron layers separated by
about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR
Artificial Neural Network to predict mean monthly total ozone in Arosa, Switzerland
Present study deals with the mean monthly total ozone time series over Arosa,
Switzerland. The study period is 1932-1971. First of all, the total ozone time
series has been identified as a complex system and then Artificial Neural
Networks models in the form of Multilayer Perceptron with back propagation
learning have been developed. The models are Single-hidden-layer and
Two-hidden-layer Perceptrons with sigmoid activation function. After sequential
learning with learning rate 0.9 the peak total ozone period (February-May)
concentrations of mean monthly total ozone have been predicted by the two
neural net models. After training and validation, both of the models are found
skillful. But, Two-hidden-layer Perceptron is found to be more adroit in
predicting the mean monthly total ozone concentrations over the aforesaid
period.Comment: 22 pages, 14 figure
Dialogue based interfaces for universal access.
Conversation provides an excellent means of communication for almost all people. Consequently, a conversational interface is an excellent mechanism for allowing people to interact with systems. Conversational systems are an active research area, but a wide range of systems can be developed with current technology. More sophisticated interfaces can take considerable effort, but simple interfaces can be developed quite rapidly. This paper gives an introduction to the current state of the art of conversational systems and interfaces. It describes a methodology for developing conversational interfaces and gives an example of an interface for a state benefits web site. The paper discusses how this interface could improve access for a wide range of people, and how further development of this interface would allow a larger range of people to use the system and give them more functionality
Correlation effects in Ni 3d states of LaNiPO
The electronic structure of the new superconducting material LaNiPO
experimentally probed by soft X-ray spectroscopy and theoretically calculated
by the combination of local density approximation with Dynamical Mean-Field
Theory (LDA+DMFT) are compared herein. We have measured the Ni L2,3 X-ray
emission (XES) and absorption (XAS) spectra which probe the occupied and
unoccupied the Ni 3d states, respectively. In LaNiPO, the Ni 3d states are
strongly renormalized by dynamical correlations and shifted about 1.5 eV lower
in the valence band than the corresponding Fe 3d states in LaFeAsO. We further
obtain a lower Hubbard band at -9 eV below the Fermi level in LaNiPO which
bears striking resemblance to the lower Hubbard band in the correlated oxide
NiO, while no such band is observed in LaFeAsO. These results are also
supported by the intensity ratio between the transition metal L2 and L3 bands
measured experimentally to be higher in LaNiPO than in LaFeAsO, indicating the
presence of the stronger electron correlations in the Ni 3d states in LaNiPO in
comparison with the Fe 3d states in LaFeAsO. These findings are in accordance
with resonantly excited transition metal L3 X-ray emission spectra which probe
occupied metal 3d-states and show the appearance of the lower Hubbard band in
LaNiPO and NiO and its absence in LaFeAsO.Comment: 6 pages, 5 figure
Absence of long-range chemical ordering in equimolar FeCoCrNi
Equimolar FeCoCrNi alloys have been the topic of recent research as "high-entropy alloys," where the name is derived from the high configurational entropy of mixing for a random solid solution. Despite their name, no systematic study of ordering in this alloy system has been performed to
date. Here, we present results from anomalous x-ray scattering and neutron scattering on quenched and annealed samples. An alloy of FeNi_3 was prepared in the same manner to act as a control. Evidence of long-range chemical ordering is clearly observed in the annealed FeNi_3 sample from both experimental techniques. The FeCoCrNi sample given the same heat treatment lacks long-range chemical order
- …