446 research outputs found

    Mortality of the invasive white garden snail Theba pisana exposed to three US isolates of Phasmarhabditis spp (P. hermaphrodita, P. californica, and P. papillosa).

    Get PDF
    Theba pisana is a serious snail pest in many parts of the world and affects diverse crops including grain, vegetables, grapevines, and ornamental plants and shrubs. Due to its gregarious nature, ability to reproduce rapidly, and the difficulty of controlling it by conventional methods, it has the potential to become a significant pest where introduced. Mitigating this pest is an important challenge that must be addressed. Phasmarhabditis hermaphrodita, is a gastropod-killing nematode that is commercially available only in Europe (Nemaslug ®) and Sub-Saharan Africa (Slugtech ® SP). The use of effective gastropod-killing nematodes in the genus Phasmarhabditis (P. hermaphrodita, P. californica and P. papillosa) in California may provide one strategy for alleviating the potential damage and further spread of these snails, which are currently limited to San Diego and Los Angeles counties. Laboratory assays demonstrated for the first time that US isolates of P. hermaphrodita, P. californica and P. papillosa at 150 DJs/cm2 caused significant mortality and are equally lethal to T. pisana. Molluscicidal efficacy of these nematodes are comparable with those of iron phosphate, at the recommended high dose of 4.88 kg/m2. Additional trials are needed to determine their effects at lower dose and whether they are dependent on the size or age of the snails

    The Effects of Individual Vessel Quotas in the British Columbia Halibut Fishery

    Get PDF
    Implementation of Individual vessel quotas (IVQs) in the British Columbia halibut fishery has provided a unique opportunity to examine the effects of this management technique on a previously intense "derby" fishery. This paper describes the changes that have occurred in the fishery since the introduction of individual vessel quotas in 1991. The results presented here are largely based on the findings of two surveys. In September 1993, we conducted in-depth interviews with most of the major halibut processors in British Columbia. These processors reported significant changes in the processors and marketing of halibut. In Spring 1994, we conducted a mail survey of all 435 licensed halibut fishermen. The survey consisted of several series of questions designed to measure changes in fishing operations (crew size, fishing practices, etc.). quota leasing activities, changes in fishing income, and opinions about the effects of IVQs. The results presented here provide important information about the effects of the British Columbia halibut IVQ program to date and will be useful for comparison to similar management programs implemented elsewhere.fishery management, ITQs, Pacific Halibut, Environmental Economics and Policy, International Relations/Trade, Resource /Energy Economics and Policy,

    The Deformation of an Elastic Substrate by a Three-Phase Contact Line

    Full text link
    Young's classic analysis of the equilibrium of a three-phase contact line ignores the out-of-plane component of the liquid-vapor surface tension. While it has long been appreciated that this unresolved force must be balanced by elastic deformation of the solid substrate, a definitive analysis has remained elusive because conventional idealizations of the substrate imply a divergence of stress at the contact line. While a number of theories of have been presented to cut off the divergence, none of them have provided reasonable agreement with experimental data. We measure surface and bulk deformation of a thin elastic film near a three-phase contact line using fluorescence confocal microscopy. The out-of-plane deformation is well fit by a linear elastic theory incorporating an out-of-plane restoring force due to the surface tension of the gel. This theory predicts that the deformation profile near the contact line is scale-free and independent of the substrate elastic modulus.Comment: 4 pages, 3 figure

    Liquid-Liquid Phase Separation in an Elastic Network

    Full text link
    Living and engineered systems rely on the stable coexistence of two interspersed liquid phases. Yet surface tension drives their complete separation. Here we show that stable droplets of uniform and tuneable size can be produced through arrested phase separation in an elastic matrix. Starting with an elastic polymer network swollen by a solvent mixture, we change the temperature or composition to drive demixing. Droplets nucleate and grow to a stable size that is tuneable by the network cross-linking density, the cooling rate, and the composition of the solvent mixture. We discuss thermodynamic and mechanical constraints on the process. In particular, we show that the threshold for macroscopic phase separation is altered by the elasticity of the polymer network, and we highlight the role of internuclear correlations in determining the droplet size and polydispersity. This phenomenon has potential applications ranging from colloid synthesis and structural colour to phase separation in biological cells.Comment: 6 figure

    A direct optical method for the study of grain boundary melting

    Full text link
    The structure and evolution of grain boundaries underlies the nature of polycrystalline materials. Here we describe an experimental apparatus and light reflection technique for measuring disorder at grain boundaries in optically clear material, in thermodynamic equilibrium. The approach is demonstrated on ice bicrystals. Crystallographic orientation is measured for each ice sample. The type and concentration of impurity in the liquid can be controlled and the temperature can be continuously recorded and controlled over a range near the melting point. The general methodology is appropriate for a wide variety of materials.Comment: 8 pages, 8 figures, updated with minor changes made to published versio

    Comparison of sample preparation methods, instrumentation platforms, and contemporary commercial databases for identification of clinically relevant mycobacteria by matrix-assisted laser desorption ionization - Time of flight mass spectrometry

    Get PDF
    When mycobacteria are recovered in clinical specimens, timely species-level identification is required to establish the clinical significance of the isolate and facilitate optimization of antimicrobial therapy. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has recently been reported to be a reliable and expedited method for identification of mycobacteria, although various specimen preparation techniques and databases for analysis are reported across studies. Here we compared two MALDI-TOF MS instrumentation platforms and three databases: Bruker Biotyper Real Time Classification 3.1 (Biotyper), Vitek MS Plus Saramis Premium (Saramis), and Vitek MS v3.0. We evaluated two sample preparation techniques and demonstrate that extraction methods are not interchangeable across different platforms or databases. Once testing parameters were established, a panel of 157 mycobacterial isolates (including 16 Mycobacterium tuberculosis isolates) was evaluated, demonstrating that with the appropriate specimen preparation, all three methods provide reliable identification for most species. Using a score cutoff value of ≥1.8, the Biotyper correctly identified 133 (84.7%) isolates with no misidentifications. Using a confidence value of ≥90%, Saramis correctly identified 134 (85.4%) isolates with one misidentification and Vitek MS v3.0 correctly identified 140 (89.2%) isolates with one misidentification. The levels of accuracy were not significantly different across the three platforms (P = 0.14). In addition, we show that Vitek MS v3.0 requires modestly fewer repeat analyses than the Biotyper and Saramis methods (P = 0.04), which may have implications for laboratory workflow

    Polycrystallinity enhances stress build-up around ice

    Full text link
    Damage caused by freezing wet, porous materials is a widespread problem, but is hard to predict or control. Here, we show that polycrystallinity makes a great difference to the stress build-up process that underpins this damage. Unfrozen water in grain-boundary grooves feeds ice growth at temperatures below the freezing temperature, leading to the fast build-up of localized stresses. The process is very variable, which we ascribe to local differences in ice-grain orientation, and to the surprising mobility of many grooves -- which further accelerates stress build-up. Our work will help understand how freezing damage occurs, and in developing accurate models and effective damage-mitigation strategies.Comment: 4 figure
    • …
    corecore