692 research outputs found

    A review of abstract concept learning in embodied agents and robots.

    Get PDF
    This paper reviews computational modelling approaches to the learning of abstract concepts and words in embodied agents such as humanoid robots. This will include a discussion of the learning of abstract words such as 'use' and 'make' in humanoid robot experiments, and the acquisition of numerical concepts via gesture and finger counting strategies. The current approaches share a strong emphasis on embodied cognition aspects for the grounding of abstract concepts, and a continuum, rather than dichotomy, view of concrete/abstract concepts differences.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'

    Earthquake detection capability of the Swiss Seismic Network

    Get PDF
    A reliable estimate of completeness magnitudes is vital for many seismicity- and hazard-related studies. Here we adopted and further developed the Probability-based Magnitude of Completeness (PMC) method. This method determines network detection completeness (MP) using only empirical data: earthquake catalogue, phase picks and station information. To evaluate the applicability to low- or moderate-seismicity regions, we performed a case study in Switzerland. The Swiss Seismic Network (SSN) at present is recording seismicity with one of the densest networks of broad-band sensors in Europe. Based on data from 1983 January 1 to 2008 March 31, we found strong spatio-temporal variability of network completeness: the highest value of MP in Switzerland at present is 2.5 in the far southwest, close to the national boundary, whereas MP is lower than 1.6 in high-seismicity areas. Thus, events of magnitude 2.5 can be detected in all of Switzerland. We evaluated the temporal evolution of MP for the last 20 yr, showing the successful improvement of the SSN. We next introduced the calculation of uncertainties to the probabilistic method using a bootstrap approach. The results show that the uncertainties in completeness magnitudes are generally less than 0.1 magnitude units, implying that the method generates stable estimates of completeness magnitudes. We explored the possible use of PMC: (1) as a tool to estimate the number of missing earthquakes in moderate-seismicity regions and (2) as a network planning tool with simulation computations of installations of one or more virtual stations to assess the completeness and identify appropriate locations for new station installations. We compared our results with an existing study of the completeness based on detecting the point of deviation from a power law in the earthquake-size distribution. In general, the new approach provides higher estimates of the completeness magnitude than the traditional one. We associate this observation with the difference in the sensitivity of the two approaches in periods where the event detectability of the seismic networks is low. Our results allow us to move towards a full description of completeness as a function of space and time, which can be used for hazard-model development and forecast-model testing, showing an illustrative example of the applicability of the PMC method to regions with low to moderate seismicit

    A subaqueous hazard map for earthquake-triggered landslides in Lake Zurich, Switzerland

    Get PDF
    The awareness of geohazards in the subaqueous environment has steadily increased in the past years and there is an increased need to assess these hazards in a quantitative sense. Prime examples are subaqueous landslides, which can be triggered by a number of processes including earthquakes or human activities, and which may impact offshore and onshore infrastructure and communities. In the literature, a plenitude of subaqueous landslide events are related to historical earthquakes, including cases from lakes in Switzerland. Here, we present an approach for a basin-wide earthquake-triggered subaquatic landslide hazard assessment for Lake Zurich, which is surrounded by a densely populated shoreline. Our analysis is based on high-resolution sediment-mechanical and geophysical input data. Slope stabilities are calculated with a grid-based limit equilibrium model on an infinite slope, which uses Monte Carlo sampled input data from a sediment- mechanical stratigraphy of the lateral slopes. Combined with probabilistic ground-shaking forecasts from a recent national seismic hazard analysis, subaquatic earthquake-triggered landslide hazard maps are constructed for different mean return periods, ranging from 475 to 9975 years. Our results provide a first quantitative landslide hazard estimation for the lateral slopes in Lake Zurich. Furthermore, a back-analysis of a case-study site indicates that pseudostatic accelerations in the range between 0.04 and 0.08 g were needed to trigger a well-investigated subaqueous landslide, dated to *2210 cal. years B.P

    Using Latent Semantic Analysis to Assess Reader Strategies

    Get PDF
    We tested a computer-based procedure for assessing reader strategies that was based on verbal protocols that utilized latent semantic analysis (LSA). Students were given self-explanation-reading training (SERT), which teaches strategies that facilitate self-explanation during reading, such as elaboration based on world knowledge and bridging between text sentences. During a computerized version of SERT practice, students read texts and typed self-explanations into a computer after each sentence. The use of SERT strategies during this practice was assessed by determining the extent to which students used the information in the current sentence versus the prior text or world knowledge in their self-explanations. This assessment was made on the basis of human judgments and LSA. Both human judgments and LSA were remarkably similar and indicated that students who were not complying with SERT tended to paraphrase the text sentences, whereas students who were compliant with SERT tended to explain the sentences in terms of what they knew about the world and of information provided in the prior text context. The similarity between human judgments and LSA indicates that LSA will be useful in accounting for reading strategies in a Web-based version of SERT

    Verifying Different-modality Properties for Concepts Produces Switching Costs

    Get PDF
    According to perceptual symbol systems (Barsalou, 1999), sensory-motor simulations underlie the representation of concepts. It follows that sensory-motor phenomena should arise in conceptual processing. Previous studies have shown that switching from one modality to another during perceptual processing incurs a processing cost. If perceptual simulation underlies conceptual processing, then verifying the properties of concepts should exhibit a switching cost as well. For example, verifying a property in the auditory modality (e.g., BLENDER-loud) should be slower after verifying a property in a different modality (e.g., CRANBERRIES-tart) than in the same modality (e.g., LEAVES-rustling). Only words were presented to subjects, and there were no instructions to use imagery. Nevertheless switching modalities incurred a cost, analogous to switching modalities in perception. A second experiment showed that this effect was not due to associative priming between properties in the same modality. These results support the hypothesis that perceptual simulation underlies conceptual processing

    Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump

    Get PDF
    Imatinib mesylate (STI571), a potent tyrosine kinase inhibitor, is successfully used in the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors. However, the intended chronic oral administration of imatinib may lead to development of cellular resistance and subsequent treatment failure. Indeed, several molecular mechanisms leading to imatinib resistance have already been reported, including overexpression of the MDR1/ABCB1 drug pump. We examined whether imatinib is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump that is frequently overexpressed in human tumors. Using a panel of well-defined BCRP-overexpressing cell lines, we provide the first evidence that imatinib is a substrate for BCRP, that it competes with mitoxantrone for drug export, and that BCRP-mediated efflux can be reversed by the fumitremorgin C analog Ko-143. Since BCRP is highly expressed in the gastrointestinal tract, BCRP might not only play a role in cellular resistance of tumor cells but also influence the gastrointestinal absorption of imatinib

    The versatile nature of miR-9/9* in human cancer

    Get PDF
    miR-9 and miR-9* (miR-9/9*) were first shown to be expressed in the nervous system and to function as versatile regulators of neurogenesis. The variable expression levels of miR-9/9* in human cancer prompted researchers to investigate whether these small RNAs may also have an important role in the deregulation of physiological and biochemical networks in human disease. In this review, we present a comprehensive overview of the involvement of miR-9/9* in various human malignancies focusing on their opposing roles in supporting or suppressing tumor development and metastasis. Importantly, it is shown that the capacity of miR-9/9* to impact tumor formation is independent from their influence on the metastatic potential of tumor cells. Moreover, data suggest that miR-9/9* may increase malignancy of one cancer cell population at the expense of another. The functional versatility of miR-9/9* emphasizes the complexity of studying miRNA function and the importance to perform functional studies of both miRNA strands in a relevant cellular context. The possible application of miR-9/9* as targets for miRNA-based therapies is discussed, emphasizing the need to obtain a better understanding of the functional properties of these miRNAs and to develop safe delivery methods to target specific cell populations
    • …
    corecore