3,770 research outputs found
A Non-Zeeman Interpretation for Polarized Maser Radiation and the Magnetic Field at the Atmospheres of Late-Type Giants
The linear polarization that is observed, together with likely changes in the
orientation of the magnetic field along the line of sight and hence of the
optical axes of the medium, can lead to the circular polarization that is
observed in the radiation of the circumstellar SiO masers. A magnetic field
greater than only about 30 mG is required, in contrast to 10-100 G that would
be implied by the Zeeman interpretation. To assess quantitatively the likely
changes in orientation of the magnetic field, calculations are performed with
representative field configurations that are created by statistical sampling
using a Kolmogorov-like power spectrum.Comment: 7 pages Latex (aaspp4.sty), 3 ps-figures. Accepted for publication in
Astrophysical Journal Letter
Metamorphism of the Oddanchatram anorthosite, Tamil Nadu, South India
The Oddanchatram anorthosite is located in the Madurai District of Tamil Nadu, near the town of Palni. It is emplaced into a granulite facies terrain commonly presumed to have undergone its last regional metamorphism in the late Archean about 2600 m.y. The surrounding country rock consists of basic granulites, charnockites and metasedimentary rocks including quartzites, pelites and calc-silicates. The anorthosite is clearly intrusive into the country rock and contains many large inclusions of previously deformed basic granulite and quartzite within 100 meters of its contact. Both this intrusion and the nearby Kaduvar anorthosite show evidence of having been affected by later metamorphism and deformation
Relation between parameters of dust and parameters of molecular and atomic gas in extragalactic star-forming regions
The relationships between atomic and molecular hydrogen and dust of various
sizes in extragalactic star-forming regions are considered, based on
observational data from the Spitzer and Herschel infrared space telescopes, the
Very Large Array (atomic hydrogen emission) and IRAM (CO emission). The source
sample consists of approximately 300 star-forming regions in 11 nearby
galaxies. Aperture photometry has been applied to measure the fluxes in eight
infrared bands (3.6, 4.5, 5.8, 8, 24, 70, 100, and 160m), the atomic
hydrogen (21cm) line and CO (2--1) lines.
The parameters of the dust in the starforming regions were determined via
synthetic-spectra fitting, such as the total dust mass, the fraction of
polycyclic aromatic hydrocarbons (PAHs), etc. Comparison of the observed fluxes
with the measured parameters shows that the relationships between atomic
hydrogen, molecular hydrogen, and dust are different in low- and
high-metallicity regions. Low-metallicity regions contain more atomic gas, but
less molecular gas and dust, including PAHs. The mass of dust constitutes about
of the mass of molecular gas in all regions considered. Fluxes produced
by atomic and molecular gas do not correlate with the parameters of the stellar
radiation, whereas the dust fluxes grow with increasing mean intensity of
stellar radiation and the fraction of enhanced stellar radiation. The ratio of
the fluxes at 8 and 24m, which characterizes the PAH content, decreases
with increasing intensity of the stellar radiation, possibly indicating
evolutionary variations of the PAH content. The results confirm that the
contribution of the 24m emission to the total IR luminosity of
extragalactic star-forming regions does not depend on the metallicity.Comment: Published in Astronomy Reports, 2017, vol. 61, issue
- …