9 research outputs found

    Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery

    No full text
    This study evaluates the potential for fluorescence lifetime imaging (FLIm) to enhance intraoperative decisionmaking during robotic-assisted surgery of oropharyngeal cancer. Using a custom built FLIm instrument integrated with the da Vinci robotic surgical platform, we first demonstrate that cancer in epithelial tissue diagnosed by histopathology can be differentiated from surrounding healthy epithelial tissue imaged in vivo prior to cancer resection and ex vivo on the excised specimen. Second, we study the fluorescence properties of tissue imaged in vivo at surgical resection margins (tumor bed). Fluorescence lifetimes and spectral intensity ratios were calculated for three spectral channels, producing a set of six FLIm parameters. Current results from 10 patients undergoing TORS procedures demonstrate that healthy epithelium can be resolved from cancer (P < .001) for at least one FLIm parameter. We also showed that a multiparameter linear discriminant analysis approach provides superior discrimination to individual FLIm parameters for tissue imaged both in vivo and ex vivo. Overall, this study highlights the potential for FLIm to be developed into a diagnostic tool for clinical cancer applications of the oropharynx. This technique could help to circumvent the issues posed by the lack of tactile feedback associated with robotic surgical platforms to better enable cancer delineation

    Intraoperative Margin Assessment in Oral and Oropharyngeal Cancer Using Label-Free Fluorescence Lifetime Imaging and Machine Learning.

    No full text
    OBJECTIVE: To demonstrate the diagnostic ability of label-free, point-scanning, fiber-based Fluorescence Lifetime Imaging (FLIm) as a means of intraoperative guidance during oral and oropharyngeal cancer removal surgery. METHODS: FLIm point-measurements acquired from 53 patients (n = 67893 pre-resection in vivo, n = 89695 post-resection ex vivo) undergoing oral or oropharyngeal cancer removal surgery were used for analysis. Discrimination of healthy tissue and cancer was investigated using various FLIm-derived parameter sets and classifiers (Support Vector Machine, Random Forests, CNN). Classifier out-put for the acquired set of point-measurements was visualized through an interpolation-based approach to generate a probabilistic heatmap of cancer within the surgical field. Classifier output for dysplasia at the resection margins was also investigated. RESULTS: Statistically significant change (P < 0.01) between healthy and cancer was observed in vivo for the acquired FLIm signal parameters (e.g., average lifetime) linked with metabolic activity. Superior classification was achieved at the tissue region level using the Random Forests method (ROC-AUC: 0.88). Classifier output for dysplasia (% probability of cancer) was observed to lie between that of cancer and healthy tissue, highlighting FLIm’s ability to distinguish various conditions. CONCLUSION: The developed approach demonstrates the potential of FLIm for fast, reliable intraoperative margin assessment without the need for contrast agents. SIGNIFICANCE: Fiber-based FLIm has the potential to be used as a diagnostic tool during cancer resection surgery, including Transoral Robotic Surgery (TORS), helping ensure complete resections and improve the survival rate of oral and oropharyngeal cancer patients

    Deletion of the cytoplasmic domain of N-cadherin reduces, but does not eliminate, traction force-transmission

    No full text
    Collective migration of epithelial cells is an integral part of embryonic development, wound healing, tissue renewal and carcinoma invasion. While previous studies have focused on cell-extracellular matrix adhesion as a site of migration-driving, traction force-transmission, cadherin mediated cell-cell adhesion is also capable of force-transmission. Using a soft elastomer coated with purified N-cadherin as a substrate and a Hepatocyte Growth Factor-treated, transformed MDCK epithelial cell line as a model system, we quantified traction transmitted by N-cadherin-mediated contacts. On a substrate coated with purified extracellular domain of N-cadherin, cell surface N-cadherin proteins arranged into puncta. N-cadherin mutants (either the cytoplasmic deletion or actin-binding domain chimera), however, failed to assemble into puncta, suggesting the assembly of focal adhesion like puncta requires the cytoplasmic domain of N-cadherin. Furthermore, the cytoplasmic domain deleted N-cadherin expressing cells exerted lower traction stress than the full-length or the actin binding domain chimeric N-cadherin. Our data demonstrate that N-cadherin junctions exert significant traction stress that requires the cytoplasmic domain of N-cadherin, but the loss of the cytoplasmic domain does not completely eliminate traction force transmission
    corecore