478 research outputs found

    Test of an empirical method for ozone detection in the stratosphere using two filtered broadband UV-meters

    Get PDF
    We describe a simple method to detect significant changes of the total ozone column from global (diffuse and direct) zenith sky measurements taken at the Earth’s surface. The calculation of the total ozone column relies on measured irradiance at two wavelengths in the ultra violet part of the solar spectrum. One of these (i.e. 306 nm) are appreciable absorbed by ozone whereas the other (i.e. 360 nm) is not. The method provides measurements for clear as well as for cloudy sky conditions. The natural logarithm of the irradiance ratio at the two wavelengths, corrected for solar elevation dependence, is assumed to be proportional to the amount of ozone in the atmospheric column. It is assumed that the two wavelengths have same properties in the atmosphere excluding the impact of ozone. Therefore variations in atmospheric conditions should cancel out in the ratio. We found a strong correlation between our calculated quantity and ozone measurements at The Danish Meteorological Institute, DMI, Copenhagen, Denmark, which is approximately 30 km away from the measuring site. The correlation coefficient, R, from linear regression had the value 0.90, and the standard deviation, Sres, for the residuals were 10.6 DU (Dobson Units), and the mean value was 322 DU, obtained from every day point measurements during the Swedish summer, total 67 days

    Introduction of a SiFA moiety into the D-glutamate chain of DOTA-PP-F11N results in radiohybrid-based CCK-2R-targeted compounds with improved pharmacokinetics in vivo

    Get PDF
    In order to enable 18F- and 177Lu-labelling within the same molecule, we introduced a silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N. In addition, minigastrin analogues with a prolonged as well as γ-linked D-glutamate chain were synthesised and evaluated. CCK-2R affinity (IC50, AR42J cells) and lipophilicity (logD7.4) were determined. Biodistribution studies at 24 h post-injection (p.i.) and µSPECT/CT imaging at 1, 4 and 24 h p.i. were carried out in AR42J tumour-bearing CB17-SCID mice. CCK-2R affinity of (R)-DOTAGA-rhCCK-1 to 18 was enhanced with increasing distance between the SiFA building block and the binding motif. Lipophilicity of [177Lu]Lu-(R)-DOTAGA-rhCCK-1 to 18 was higher compared to that of [177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04. The respective α- and γ-linked rhCCK derivatives revealing the highest CCK-2R affinity were further evaluated in vivo. In comparison with [177Lu]Lu-DOTA-PP-F11N, [177Lu-]Lu-(R)-DOTAGA-rhCCK-9 and -16 exhibited three- to eight-fold increased activity levels in the tumour at 24 h p.i. However, activity levels in the kidneys were elevated as well. We could show that the introduction of a lipophilic SiFA moiety into the hydrophilic backbone of [177Lu]Lu-DOTA-PP-F11N led to a decelerated blood clearance and thus improved tumour retention. However, elevated kidney retention has to be addressed in future studies

    Differential gene expression in pristane-induced arthritis susceptible DA versus resistant E3 rats

    Get PDF
    Arthritis susceptibility genes were sought by analysis of differential gene expression between pristane-induced arthritis (PIA)-susceptible DA rats and PIA-resistant E3 rats. Inguinal lymph nodes of naïve animals and animals 8 days after pristane injection were analyzed for differential gene expression. mRNA expression was investigated by microarray and real-time PCR, and protein expression was analyzed by flow cytometry or ELISA. Twelve genes were significantly differentially expressed when analyzed by at least two independent methods, and an additional five genes showed a strong a tendency toward differential expression. In naïve DA rats IgE, the bone marrow stromal cell antigen 1 (Bst1) and the MHC class II β-chain (MhcII) were expressed at a higher level, and the immunoglobulin kappa chain (Igκ) was expressed at a lower level. In pristane-treated DA rats the MHC class II β-chain, gelatinase B (Mmp9) and the protein tyrosine phosphatase CL100 (Ptpn16) were expressed at a higher level, whereas immunoglobulins, the CD28 molecule (Cd28), the mast cell specific protease 1 (Mcpt1), the carboxylesterase precursor (Ces2), K-cadherin (Cdh6), cyclin G1 (Ccng1), DNA polymerase IV (Primase) and the tumour associated glycoprotein E4 (Tage) were expressed at a lower level. Finally, the differentially expressed mRNA was confirmed with protein expression for some of the genes. In conclusion, the results show that animal models are well suited for reproducible microarray analysis of candidate genes for arthritis. All genes have functions that are potentially important for arthritis, and nine of the genes are located within genomic regions previously associated with autoimmune disease

    Development of the first 18F-labeled radiohybrid-based minigastrin derivative with high target affinity and tumor accumulation by substitution of the chelating moiety

    Get PDF
    In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18

    Significant reduction of activity retention in the kidneys via optimized linker sequences in radiohybrid-based minigastrin analogs

    Get PDF
    Background We recently introduced radiohybrid (rh)-based minigastrin analogs e.g., DOTA-rhCCK-18 (DOTA-D-Dap(p-SiFA)-(D-γ-Glu)8-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2), that revealed substantially increased activity retention in the tumor. However, one major drawback of these first generation rh-based cholecystokinin-2 receptor (CCK-2R) ligands is their elevated activity levels in the kidneys, especially at later time points (24 h p.i.). Therefore, this study aimed to reduce kidney retention with regard to a therapeutic use via substitution of negatively charged D-glutamic acid moieties by hydrophilic uncharged polyethylene glycol (PEG) linkers of various length ((PEG)4 to (PEG)11). Furthermore, the influence of differently charged silicon-based fluoride acceptor (SiFA)-moieties (p-SiFA: neutral, SiFA-ipa: negatively charged, and SiFAlin: positively charged) on in vitro properties of minigastrin analogs was evaluated. Out of all compounds evaluated in vitro, the two most promising minigastrin analogs were further investigated in vivo. Results CCK-2R affinity of most compounds evaluated was found to be in a range of 8–20 nM (by means of apparent IC50), while ligands containing a SiFA-ipa moiety displayed elevated IC50 values. Lipophilicity was noticeably lower for compounds containing a D-γ-glutamate (D-γ-Glu) moiety next to the D-Dap(SiFA) unit as compared to their counterparts lacking the additional negative charge. Within this study, combining the most favorable CCK-2R affinity and lipophilicity, [177/natLu]Lu-DOTA-rhCCK-70 (DOTA-D-Dap(p-SiFA)-D-γ-Glu-(PEG)7-D-γ-Glu-(PEG)3-Trp-(N-Me)Nle-Asp-1-Nal-NH2; IC50: 12.6 ± 2.0 nM; logD7.4: − 1.67 ± 0.08) and [177/natLu]Lu-DOTA-rhCCK-91 (DOTA-D-Dap(SiFAlin)-D-γ-Glu-(PEG)4-D-γ-Glu-(PEG)3-Trp-(N-Me)Nle-Asp-1-Nal-NH2; IC50: 8.6 ± 0.7 nM; logD7.4 =  − 1.66 ± 0.07) were further evaluated in vivo. Biodistribution data of both compounds revealed significantly reduced (p < 0.0001) activity accumulation in the kidneys compared to [177Lu]Lu-DOTA-rhCCK-18 at 24 h p.i., leading to enhanced tumor-to-kidney ratios despite lower tumor uptake. However, overall tumor-to-background ratios of the novel compounds were lower than those of [177Lu]Lu-DOTA-rhCCK-18. Conclusion We could show that the reduction of negative charges within the linker section of radiohybrid-based minigastrin analogs led to decreased activity levels in the kidneys at 24 h p.i., while maintaining a good tumor uptake. Thus, favorable tumor-to-kidney ratios were accomplished in vivo. However, further optimization has to be done in order to improve tumor retention and general biodistribution profile
    corecore