5,292 research outputs found

    Helicity Parton Distributions from Spin Asymmetries in W-Boson Production at RHIC

    Get PDF
    We present a next-to-leading order QCD calculation of the cross section and longitudinal spin asymmetry in single-inclusive charged-lepton production, pp -> l X, at RHIC, where the lepton is produced in the decay of an electroweak gauge boson. Our calculation is presented in terms of a multi-purpose Monte-Carlo integration program that may be readily used to include experimental spin asymmetry data in a global analysis of helicity parton densities. We perform a toy global analysis, studying the impact of anticipated RHIC data on our knowledge about the polarized anti-quark distributions.Comment: 22 pages, 13 figures included. Typos in Figs 2, 6, 8 and scales correcte

    Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique

    Get PDF
    Phase variance-based motion contrast imaging is demonstrated using a spectral domain optical coherence tomography system for the in vivo human retina. This contrast technique spatially identifies locations of motion within the retina primarily associated with vasculature. Histogram-based noise analysis of the motion contrast images was used to reduce the motion noise created by transverse eye motion. En face summation images created from the 3D motion contrast data are presented with segmentation of selected retinal layers to provide non-invasive vascular visualization comparable to currently used invasive angiographic imaging. This motion contrast technique has demonstrated the ability to visualize resolution-limited vasculature independent of vessel orientation and flow velocity

    The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography.

    Get PDF
    PurposeOptical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT.MethodsUsing AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject.ResultsBand 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements.ConclusionsBand 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length

    Analyse der Störfestigkeit nichtlinearer Schaltungen gegenüber leitungsgebundenen elektromagnetischen Störungen mit multi-input Wiener/Hammerstein-Modellen

    Get PDF
    In dieser Arbeit wird der Einfluss von leitungsgebundenen Störungen untersucht, welche in einen beliebigen Eingang (Signaleingang, Spannungsversorgung, Masse-Potenzial, etc.) einer Analogschaltung einkoppeln. Die zu untersuchende Schaltung wird dazu durch einen Wiener/Hammerstein-Ansatz als nichtlineares System mit zwei Eingängen modelliert. Mit Hilfe dieses Blockmodells werden analytische Ausdrücke derjenigen Frequenzanteile bestimmt, die durch Intermodulationen zwischen Stör- und Eingangssignal am Ausgang einer Schaltung entstehen.BMBF/03X4604

    Photon-photon correlations and entanglement in doped photonic crystals

    Full text link
    We consider a photonic crystal (PC) doped with four-level atoms whose intermediate transition is coupled near-resonantly with a photonic band-gap edge. We show that two photons, each coupled to a different atomic transition in such atoms, can manifest strong phase or amplitude correlations: One photon can induce a large phase shift on the other photon or trigger its absorption and thus operate as an ultrasensitive nonlinear photon-switch. These features allow the creation of entangled two-photon states and have unique advantages over previously considered media: (i) no control lasers are needed; (ii) the system parameters can be chosen to cause full two-photon entanglement via absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference

    Improved in vivo imaging of human blood circulation in the chorioretinal complex using phase variance method with new phase stabilized 1 μm swept-source optical coherence tomography (pv-SSOCT)

    Get PDF
    We demonstrate the feasibility of our newly developed phase stabilized high-speed (100 kHz A-scans/s) 1 μm sweptsource optical coherence tomography (SSOCT) system with the phase-variance based motion contrast method for visualization of human chorioretinal complex microcirculation. Compared to our previously reported spectral domain (spectrometer based) phase-variance (pv)-SDOCT system it has advantages of higher sensitivity, reduced fringe washout for high blood flow speeds and deeper penetration in choroid. High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. This process does not require additional calibration hardware and complex numerical procedures. Our phase stabilization method is simple and can be employed in a variety of SS-OCT systems. Examples of vasculature in the chorioretinal complex imaged by pv-SSOCT is presented and compared to retinal images of the same volunteers acquired with fluorescein angiography (FA) and indocyanine green angiography (ICGA)

    Prospects for photon blockade in four level systems in the N configuration with more than one atom

    Get PDF
    We show that for appropriate choices of parameters it is possible to achieve photon blockade in idealised one, two and three atom systems. We also include realistic parameter ranges for rubidium as the atomic species. Our results circumvent the doubts cast by recent discussion in the literature (Grangier et al Phys. Rev Lett. 81, 2833 (1998), Imamoglu et al Phys. Rev. Lett. 81, 2836 (1998)) on the possibility of photon blockade in multi-atom systems.Comment: 8 page, revtex, 7 figures, gif. Submitted to Journal of Optics B: Quantum and Semiclassical Optic

    On Estimation of Fully Entangled Fraction

    Full text link
    We study the fully entangled fraction (FEF) of arbitrary mixed states. New upper bounds of FEF are derived. These upper bounds make complements on the estimation of the value of FEF. For weakly mixed quantum states, an upper bound is shown to be very tight to the exact value of FEF.Comment: 8 pages, 2 figure
    corecore