32 research outputs found

    Individual adherence to mass drug administration in neglected tropical disease control: a probability model conditional on past behaviour

    Get PDF
    AbstractWe present a general framework which describes the systematic (binary) scenario of individuals either taking treatment or not for any reason, over the course of mass drug administration (MDA) — which we refer to as ‘adherence’ and ‘non-adherence’. The probability models developed can be informed by observed adherence behaviour as well as employed to explore how different patterns influence the impact of MDA programmes, by the use of mathematical models of transmission and control. We demonstrate the interpretative value of the developed probability model employing a dataset collected in the TUMIKIA project, a randomised trial of deworming strategies to control soil-transmitted helminths (STH) by MDA conducted in coastal Kenya. We stratify our analysis by age and sex, although the framework which we introduce here may be readily adapted to accommodate other stratifications. Our findings include the detection of specific patterns of non-adherence in all age groups to varying extents. This is particularly apparent in men of ages 30+. We then demonstrate the use of the probability model in stochastic individual-based simulations by running two example forecasts for the elimination of STH transmission employing MDA within the TUMIKIA trial setting with different adherence patterns. This suggested a substantial reduction in the probability of elimination (between 23-43%) when comparing observed adherence patterns with an assumption of independence, with important implications for programmes. The results here demonstrate the considerable impact and utility of considering non-adherence on the success of MDA programmes to control neglected tropical diseases (NTDs).Author summaryMass drug administration (MDA) is an important tool in the prevention of morbidity caused by various NTDs and in the reduction of their transmission. Due to a variety of social and behavioural reasons, many people will either not be offered or refuse such treatment, and if this behaviour is recurring at an individual level, then control measures may face a challenge in achieving their stated goals. Accurately describing the patterns of individual adherence or non-adherence to MDA control measures for NTDs from data, followed by their use in simulated scenarios is a relatively recent development in the study of NTDs. Past analyses assessing individual adherence have informed the approach we take in this work. However, we have sought to provide a framework which encapsulates as many types of adherence behaviour as possible to facilitate the assessment of impact in mathematical models of parasite transmission and control. Our example application to the TUMIKIA data highlights the importance of such a general framework as we find a dependence on past behaviour that may have been missed in standard statistical analyses.</jats:sec

    Investigating the effectiveness of current and modified world health organization guidelines for the control of soil-transmitted helminth infections

    Get PDF
    Background. Considerable efforts have been made to better understand the effectiveness of large-scale preventive chemotherapy therapy for the control of morbidity caused by infection with soil-transmitted helminths (STHs): Ascaris lumbricoides, Trichuris trichiura, and the 2 hookworm species, Necator americanus and Ancylostoma duodenale. Current World Health Organization (WHO) guidelines for STH control include mass drug administration (MDA) programs based on prevalence measurements, aiming at reducing morbidity in pre-school-aged children (pre-SAC) and school-aged children (SAC) by lowering the prevalence of moderate- to heavy-intensity infections to <1%. Methods. We project the likely impact of following the current WHO guidelines and assess whether the WHO morbidity goals will be achieved across a range of transmission settings. We also investigate modifications that could be made to the current WHO treatment guidelines, and project their potential impacts in achieving morbidity and transmission control. Results. While the standard guidelines are sufficient at low transmission levels, community-wide treatment (ie, involving pre- SAC, SAC, and adults) is essential if WHO morbidity goals are to be met in moderate- to high-transmission settings. Moreover, removing the recommendation of decreasing the treatment frequency at midline (5-6 years after the start of MDA) further improves the likelihood of achieving morbidity control in SAC. Conclusions. We meld analyses based on 2 mathematical models of parasite transmission and control by MDA for the dominant STH species, to generate a unified treatment approach applicable across all settings, regardless of which STH infection is most common. We recommend clearly defined changes to the current WHO guidelines

    Determining post-treatment surveillance criteria for predicting the elimination of Schistosoma mansoni transmission.

    Get PDF
    BACKGROUND: The World Health Organization (WHO) has set elimination (interruption of transmission) as an end goal for schistosomiasis. However, there is currently little guidance on the monitoring and evaluation strategy required once very low prevalence levels have been reached to determine whether elimination or resurgence of the disease will occur after stopping mass drug administration (MDA) treatment. METHODS: We employ a stochastic individual-based model of Schistosoma mansoni transmission and MDA impact to determine a prevalence threshold, i.e. prevalence of infection, which can be used to determine whether elimination or resurgence will occur after stopping treatment with a given probability. Simulations are run for treatment programmes with varying probabilities of achieving elimination and for settings where adults harbour low to high burdens of infection. Prevalence is measured based on using a single Kato-Katz on two samples per individual. We calculate positive predictive values (PPV) using PPV ≥ 0.9 as a reliable measure corresponding to ≥ 90% certainty of elimination. We analyse when post-treatment surveillance should be carried out to predict elimination. We also determine the number of individuals across a single community (of 500-1000 individuals) that should be sampled to predict elimination. RESULTS: We find that a prevalence threshold of 1% by single Kato-Katz on two samples per individual is optimal for predicting elimination at two years (or later) after the last round of MDA using a sample size of 200 individuals across the entire community (from all ages). This holds regardless of whether the adults have a low or high burden of infection relative to school-aged children. CONCLUSIONS: Using a prevalence threshold of 0.5% is sufficient for surveillance six months after the last round of MDA. However, as such a low prevalence can be difficult to measure in the field using Kato-Katz, we recommend using 1% two years after the last round of MDA. Higher prevalence thresholds of 2% or 5% can be used but require waiting over four years for post-treatment surveillance. Although, for treatment programmes where elimination is highly likely, these higher thresholds could be used sooner. Additionally, switching to more sensitive diagnostic techniques, will allow for a higher prevalence threshold to be employed

    Heterogeneity in transmission parameters of hookworm infection within the baseline data from the TUMIKIA study in Kenya.

    Get PDF
    BACKGROUND: As many countries with endemic soil-transmitted helminth (STH) burdens achieve high coverage levels of mass drug administration (MDA) to treat school-aged and pre-school-aged children, understanding the detailed effects of MDA on the epidemiology of STH infections is desirable in formulating future policies for morbidity and/or transmission control. Prevalence and mean intensity of infection are characterized by heterogeneity across a region, leading to uncertainty in the impact of MDA strategies. In this paper, we analyze this heterogeneity in terms of factors that govern the transmission dynamics of the parasite in the host population. RESULTS: Using data from the TUMIKIA study in Kenya (cluster STH prevalence range at baseline: 0-63%), we estimated these parameters and their variability across 120 population clusters in the study region, using a simple parasite transmission model and Gibbs-sampling Monte Carlo Markov chain techniques. We observed great heterogeneity in R0 values, with estimates ranging from 1.23 to 3.27, while k-values (which vary inversely with the degree of parasite aggregation within the human host population) range from 0.007 to 0.29 in a positive association with increasing prevalence. The main finding of this study is the increasing trend for greater parasite aggregation as prevalence declines to low levels, reflected in the low values of the negative binomial parameter k in clusters with low hookworm prevalence. Localized climatic and socioeconomic factors are investigated as potential drivers of these observed epidemiological patterns. CONCLUSIONS: Our results show that lower prevalence is associated with higher degrees of aggregation and hence prevalence alone is not a good indicator of transmission intensity. As a consequence, approaches to MDA and monitoring and evaluation of community infection status may need to be adapted as transmission elimination is aimed for by targeted treatment approaches

    Current epidemiological evidence for predisposition to high or low intensity human helminth infection: a systematic review

    No full text
    Abstract Background The human helminth infections include ascariasis, trichuriasis, hookworm infections, schistosomiasis, lymphatic filariasis (LF) and onchocerciasis. It is estimated that almost 2 billion people worldwide are infected with helminths. Whilst the WHO treatment guidelines for helminth infections are mostly aimed at controlling morbidity, there has been a recent shift with some countries moving towards goals of disease elimination through mass drug administration, especially for LF and onchocerciasis. However, as prevalence is driven lower, treating entire populations may no longer be the most efficient or cost-effective strategy. Instead, it may be beneficial to identify individuals or demographic groups who are persistently infected, often termed as being “predisposed” to infection, and target treatment at them. Methods The authors searched Embase, MEDLINE, Global Health, and Web of Science for all English language, human-based papers investigating predisposition to helminth infections published up to October 31st, 2017. The varying definitions used to describe predisposition, and the statistical tests used to determine its presence, are summarised. Evidence for predisposition is presented, stratified by helminth species, and risk factors for predisposition to infection are identified and discussed. Results In total, 43 papers were identified, summarising results from 34 different studies in 23 countries. Consistent evidence of predisposition to infection with certain species of human helminth was identified. Children were regularly found to experience greater predisposition to Ascaris lumbricoides, Schistosoma mansoni and S. haematobium than adults. Females were found to be more predisposed to A. lumbricoides infection than were males. Household clustering of infection was identified for A. lumbricoides, T. trichiura and S. japonicum. Ascaris lumbricoides and T. trichiura also showed evidence of familial predisposition. Whilst strong evidence for predisposition to hookworm infection was identified, findings with regards to which groups were affected were considerably more varied than for other helminth species. Conclusion This review has found consistent evidence of predisposition to heavy (and light) infection for certain human helminth species. However, further research is needed to identify reasons for the reported differences between demographic groups. Molecular epidemiological methods associated with whole genome sequencing to determine ‘who infects whom’ may shed more light on the factors generating predisposition

    The past matters: estimating intrinsic hookworm transmission intensity in areas with past mass drug administration to control lymphatic filariasis

    No full text
    Abstract Background Current WHO guidelines for soil-transmitted helminth (STH) control focus on mass drug administration (MDA) targeting preschool-aged (pre-SAC) and school-aged children (SAC), with the goal of eliminating STH as a public health problem amongst children. Recently, attention and funding has turned towards the question whether MDA alone can result in the interruption of transmission for STH. The lymphatic filariasis (LF) elimination programme, have been successful in reaching whole communities. There is the possibility of building upon the infrastructure created for these LF-programmes to enhance the control of STH. Using hookworm as an example, we explore what further MDA coverage might be required to induce interruption of transmission for hookworm in the wake of a successful LF programme. Results Analyses based on the model of STH transmission and MDA impact predict the effects of previous LF control by MDA over five years, on a defined baseline prevalence of STH in an area with a defined transmission intensity (the basic reproductive number R0). If the LF MDA programme achieved a high coverage (70, 70 and 60% for pre-SAC, SAC and adults, respectively) we expect that in communities with a hookworm prevalence of 15%, after 5 years of LF control, the intrinsic R0 value in that setting is 2.47. By contrast, if lower LF coverages were achieved (40, 40 and 30% for pre-SAC, SAC and adults, respectively), with the same prevalence of 15% at baseline (after 5 years of LF MDA), the intrinsic hookworm R0 value is predicted to be 1.67. The intrinsic R0 value has a large effect on the expected successes of follow-up STH programmes post LF MDA. Consequently, the outcomes of identical programmes may differ between these communities. Conclusion To design the optimal MDA intervention to eliminate STH infections, it is vital to have information on historical MDA programmes and baseline prevalence to estimate the intrinsic transmission intensity for the defined setting (R0). The baseline prevalence alone is not sufficient to inform policy for the control of STH, post cessation of LF MDA, since this will be highly dependent on the intensity and effectiveness of past programmes and the intrinsic transmission intensity of the dominant STH species in any given setting

    Investigating the effectiveness of current and modified World Health Organization guidelines for the control of soil-transmitted helminth infections

    No full text
    Background: Considerable efforts have been made to better understand the effectiveness of large-scale preventive chemotherapy therapy for the control of morbidity caused by infection with soil-transmitted helminths (STHs): Ascaris lumbricoides, Trichuris trichiura, and the 2 hookworm species, Necator americanus and Ancylostoma duodenale. Current World Health Organization (WHO) guidelines for STH control include mass drug administration (MDA) programs based on prevalence measurements, aiming at reducing morbidity in pre-school-aged children (pre-SAC) and school-aged children (SAC) by lowering the prevalence of moderate- to heavy-intensity infections to <1%. Methods: We project the likely impact of following the current WHO guidelines and assess whether the WHO morbidity goals will be achieved across a range of transmission settings. We also investigate modifications that could be made to the current WHO treatment guidelines, and project their potential impacts in achieving morbidity and transmission control. Results: While the standard guidelines are sufficient at low transmission levels, community-wide treatment (ie, involving pre-SAC, SAC, and adults) is essential if WHO morbidity goals are to be met in moderate- to high-transmission settings. Moreover, removing the recommendation of decreasing the treatment frequency at midline (5-6 years after the start of MDA) further improves the likelihood of achieving morbidity control in SAC. Conclusions: We meld analyses based on 2 mathematical models of parasite transmission and control by MDA for the dominant STH species, to generate a unified treatment approach applicable across all settings, regardless of which STH infection is most common. We recommend clearly defined changes to the current WHO guidelines
    corecore