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Abstract 1

We present a comprehensive framework which describes the systematic (binary) choice 2

of individuals to either take treatment, or not for any reason, over the course of multiple 3

rounds of mass drug administration (MDA) — which we here here refer to as 4

‘adherence’ and ‘non-adherence’. This methodology can be fitted to (or informed by) 5

program data as well as manipulated to reproduce the same adherence behaviours of 6

past analyses, and can go beyond past analyses to describe new behaviours that have 7

yet to be considered in the literature. Our model also has a straightforward 8

interpretation and implementation in simulations of mass drug trials for disease 9

transmission studies and forecasts for control through MDA. We demonstrate how our 10

analysis may be implemented to statistically infer adherence behaviour from a dataset 11

by applying our approach to the recent adherence data from the TUMIKIA project, a 12

recent trial of deworming strategies in Kenya. We stratify our analysis according to age 13

and sex, though the framework which we introduce here may be readily adapted to 14

accomodate other categories. Our findings include the detection of past behaviour 15

dependent non-adherence in all age groups to varying degrees of severity and 16

particularly strong non-adherent behaviour of men of ages 30+. We then demonstrate 17

the use of our model in stochastic individual-based simulations by running two example 18

forecasts for elimination in TUMIKIA with the learned adherence behaviour 19

implemented. Our results demonstrate the impact and utility of including 20

non-adherence from real world datasets in simulations. 21

Author summary 22

Mass drug administration (MDA) is an important tool in prevention of morbidity from 23

various neglected tropical diseases (NTDs). Due to a variety of social and medical 24

reasons, many people will either not be offered or refuse such treatment, and if this 25

behaviour is recurring then control measures may face a challenge to achieving their 26
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stated goals. Learning the patterns of individual adherence or non-adherence to MDA 27

control measures for NTDs from real world data followed by their implementation in 28

simulated scenarios is a relatively recent development in the study of NTDs. Past 29

analyses assessing individual adherence have informed the approach we take in this 30

work. However, we have sought to provide a framework which encapsulates as many 31

types of adherence behaviour as possible so that their implementation in modern 32

simulations is streamlined effectively. Our example application to the TUMIKIA data 33

highlights the importance of such a general framework as we find past behaviour 34

dependence that may have been missed by other methods. 35

1 Introduction 36

Recent reviews, guidelines and work predicting the outcome of MDA to control the 37

transmission of various NTDs all strongly stress the importance of individual adherence 38

in successfully reaching elimination targets [1–9] (see also Ref [10] for a review on 39

patient adherence to HIV medication). Such analyses have taken a variety of approaches 40

in describing the strength in tendency of participants in a given MDA program with 41

multiple rounds to either passively or actively avoid treatment in a potentially repetitive 42

manner. The precise nomenclature for this behaviour is also debated, where terms such 43

as ‘compliance’, ‘adherence’ and ‘concordance’ were all discussed for their relative merits 44

in a recent review [7]. In this work, we shall refer to the binary choice of individuals to 45

either take treatment, or not for any reason, over the course of multiple rounds of MDA 46

as revealing their ‘adherence’ or ‘non-adherence’. Ultimately, the effect that this 47

behaviour has on the success or failure of control through MDA is equally unambiguous. 48

In this paper, we develop a general approach to describe individual adherence or 49

non-adherence to MDA, into which past literature approaches (or future ones) may be 50

incorporated. Our principle intention is to provide a framework within which as many 51

behaviours as possible are captured so that computational modelling approaches are 52

more flexible. To illustrate how our methodology may be implemented and interpreted 53

in practice, we apply it to the TUMIKIA project: a recent cluster randomised, 54

controlled trial in Kwale County, Kenya [11–13]. 55

2 Adherence models 56

2.1 Model definitions 57

There are a range of studies of treatment adherence in the literature and models of 58

adherence are included in micro-simulations of disease control strategies across a 59

number of diseases. See, e.g., Refs [1, 3–8]. In this section, we will lay out a general 60

model for the treatment adherence across multiple rounds in an MDA intervention 61

program. In Appendix S3, we discuss other implementations of adherence in models and 62

how they fit within our general framework. 63

At the level of an individual involved in an MDA treatment program, we model 64

adherence as a binary choice, made at each round of MDA, of whether to accept 65

treatment or not. We associate a probability with this choice, making each round a 66

Bernoulli trial for each individual. The probability of accepting treatment is a 67

combination of personal choice and also an individual’s access to treatment. 68

We identify three main ways in which the probability of adherence can vary in a 69

population over the course of an MDA intervention. 70

1. Dependence on past behaviour: An individual’s probability of adhering in the 71

current round may depend on their individual history of adherence in past rounds. 72
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For example, someone may feel that being treated last year makes it less 73

important to receive treatment in the current round. Alternatively, they may have 74

been put off treatment due to side effects from initially taking the drug (e.g. 75

praziquantel to treat schisosomiasis makes some children suffer from headaches, 76

dizziness, stomach pain, nausea, or tiredness) 77

2. Time dependence: everyone involved in the trial may be subject to global 78

influences that change over time. For example, enthusiasm or funding for the trial 79

may drop as it proceeds, or unforeseen sociological or political events may change 80

people’s desire to adhere to the program. This will result in the probability of 81

treatment in a given round for a given individual being explicitly dependent on 82

time and is distinct from dependence on past behaviour, which will also result 83

implicitly in the probability of treatment for an individual changing over time. 84

3. Population-level heterogeneity: the probability of adherence may vary across the 85

population. That is, individuals may have a personal probability of adherence 86

that they retain across multiple rounds of the intervention. In this case, the 87

probability of adherence will have a distribution across the population. Typically, 88

population-level heterogeneity may be strongly correlated with covariates such as 89

sex or age group, in which case it can be represented by a stratification (or 90

‘binning’) of the population into sub-groups, each with their own adherence 91

probability. 92

In reality, any model of adherence might include one or more of these sources of 93

variability, or none at all in the default case in which the adherence probability is 94

constant across all individuals and all treatment rounds and doesn’t depend on past 95

history. For purposes of illustration, we can create a tree of possible model types based 96

on the possible sources of variability (see Fig 1). Models can be stratified into types 97

which have some degree of dependence on the past behaviour of individuals and those 98

that do not. Within each group, there are models with and without population 99

heterogeneity in adherence (heterogeneous and homogeneous populations, respectively) 100

and those with and without time-dependent adherence probabilities (time-dependent 101

and independent, respectively). 102

The distinctions above are of critical importance as it is possible, e.g., for a 103

treatment program to suffer severely from past behaviour dependent non-adherence 104

without any apparent heterogeneity in adherence within the population. They also allow 105

us to categorise and clarify models of adherence already described in the literature, 106

which include Refs [1, 4–8]. 107

Several models of MDA treatment programs employ an adherence model developed 108

by Plaisier in the context of onchocerciasis (the Plaisier model) [8]. The Plaisier model 109

assigns a probability of adherence to each individual which they then retain for the 110

duration of the MDA program [14,15]. As such, this model would be characterised by 111

us as a heterogeneous population, time-independent model with no explicit individual 112

dependence on past behaviour. For the interested reader, we discuss the relationship of 113

the Plaisier model (and others [5]) to our categorisation of adherence models with more 114

detail in Appendix S3. 115

We shall now proceed with a technical overview to the three categories of adherence 116

illustrated by Fig 1 in Secs 2.2, 2.3 and 2.4, respectively. Additional technical details 117

and calculations may also be found in Appendix S1. 118
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Fig 1. A decision tree illustrating the possible classes of behaviour which may be characterised in adherence models.

2.2 Individual past behaviour dependent adherence 119

2.2.1 Basic model 120

Before we introduce the notion of dependence on past behaviour in our model, it shall 121

be instructive to describe the situation where it is absent. When the probability of an 122

individual taking treatment is not dependent upon any of their past behaviour, then it 123

is simply given by the coverage cn in each round n of MDA. In the absence of 124

population heterogeneity, this probability would then apply to all individuals within a 125

given cohort — a case which corresponds to either the 6th or 8th row of Fig 1, 126

depending on whether the coverage changes over time, i.e., between rounds. 127

For the case of a homogeneous population with a dependence on past behaviour 128

between successive rounds, let us consider the dynamics of a single individual. In this 129

case, the model becomes a simple Markov chain. The possible patterns of adherence 130

behaviour by an individual after two successive rounds of treatment are TT, TF, FT 131

and FF, where T and F are accepting and avoiding treatment, respectively. Let the 132

probability of accepting treatment in the first round be set to P (T) = α. In round 2, we 133

now fix the conditional probability of getting treated, given treatment in the first round 134

as P (T′|T) = β. Let us also set a corresponding conditional probability for not being 135

treated in the second round given that there was no treatment in the first round as 136

P (F′|F) = 1− γ. As such, β and γ are now measures of consistent behaviour. 137

To avoid unnecessary repetition, we shall once again use the notation pn to denote 138

the probability of treatment in the n-th round. Assuming that the conditional 139

probabilities β and γ are constant, the time-independent Markov model may be mapped 140
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to the following recursion relation 141

pn = βpn−1 + (1− γ)(1− pn−1) . (1)

Defining the system state vector as 142

pn =

(
pn

1− pn

)
, (2)

we may rewrite Eq (1) above in the form pn = Mpn−1 where we have defined the 143

following transition matrix 144

M ≡
(

β 1− γ
1− β γ

)
. (3)

The eigenvalues and eigenvectors of M are given by

λ′ = 1 , v′ =
1

2− γ − β

(
1− γ
1− β

)
, (4)

λ = β + γ − 1 , v =

(
−1
1

)
. (5)

where v′ is normalised to sum to 1. As long as |β + γ| < 1, the system will relax to the 145

v′ state, which has a unit eigenvalue, giving a long-term probability of treatment of1 146

q ≡ 1− γ
2− γ − β

. (6)

In addition, the relaxation will be oscillatory if λ < 0. In Appendix S1, we demonstrate 147

how to obtain the following solution to Eq (1) 148

pn = αλn−1 + q
(
1− λn−1

)
. (7)

Notice that by matching pn to the coverage of treatment in a given population, one may 149

directly compare the impact of adherence models such as Eq (1) to those with past 150

behaviour independent adherence behaviour. Furthermore, by setting λ = 0 in Eq (7) 151

one finds a model for past behaviour independent adherence that is time-independent, 152

i.e., pn = β = 1− γ. 153

Any sequence of treatments can be seen as a set of alternating adherent and 154

non-adherent runs. A key statistic in the context of preventive chemotherapy is the run 155

length (in rounds) over which an individual complies or fails to adhere. For an adherence 156

run, this is the number of consecutive treatment adherences, given an initial adherence. 157

This can also be thought of as the first passage time to failure. Since the P (T′|T) = β is 158

constant, the run length is distributed according to a geometric distribution, with 159

P (n
T

) = βn−1(1− β) , E(n
T

) =
1

1− β
=

1

1− λ
1

1− q
. (8)

Correspondingly, for a run of failures, 160

P (n
F
) = γn−1(1− γ) , E(n

F
) =

1

1− γ
=

1

1− λ
1

q
. (9)

Any long run of treatment choices by an individual will breakdown into an alternating 161

sequence of F and T runs. Hence, the probability of a round chosen at random being T, 162

P (T), is 163

P (T) =
E(n

T
)

E(nF) + E(nT)
= q , (10)

1One may confirm this trivially by satisfying pn = pn−1 and Eq (1) simultaneously.
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Table 1. Probability table corresponding to two successive rounds of treatment.

Behaviour Probability
TT αβ
TF α(1− β)
FT (1− α)(1− γ)
FF (1− α)γ

matching the conclusions drawn earlier from the eigenvalues and eigenvectors of Eq (5). 164

From Eqs (8) and (9), it is clear that as λ approaches 1, the length of both success and 165

failure runs grows as 1/(1− λ). In the absence of past behaviour dependence, λ = 0 and 166

the adherent and non-adherent run lengths are given by 1/(1− q) and 1/q, respectively. 167

2.2.2 Statistical inference from data 168

Let us now only consider two rounds of treatment to illustrate how we may calculate 169

the important quantities for statistical inference of the time-independent Markov model 170

from a real dataset. Recall that the possible patterns of adherence behaviour by an 171

individual after two successive rounds of treatment are TT, TF, FT and FF, where T 172

and F are accepting and avoiding treatment, respectively. Once again, let: the 173

probability of treatment in the first round be set to P (T) = α; the conditional 174

probability of getting treated in the second round, given treatment in the first round be 175

set to P (T′|T) = β; and the conditional probability for not being treated in the second 176

round given that there was no treatment in the first round be set to P (F′|F) = 1− γ. 177

In this model, there are effectively 4 types of people with probabilities and 178

behaviours, mapped out in Table 1. Using the probability table, one may infer directly 179

that the the likelihood L(D|θ) of the data D = {NT, NF, NTT, NTF, NFT, NFF} — 180

where NT and NF are the number treated and not treated in the first round and NTT is 181

the number treated in the first and the second rounds, etc. — is a multinomial 182

distribution, where θ ∈ Ωθ is now a 3-vector defined over the model parameter space 183

θ = (α, β, γ) within the prior domain Ωθ = {θ | θ1 ∈ [0, 1] , θ2 ∈ [0, 1] , θ3 ∈ [0, 1]}. The 184

multinomial can then be factored into independent functions of the three parameters, 185

such that 186

L(D|θ) = αNT(1− α)NFβNTT(1− β)NTFγNFF(1− γ)NFT . (11)

The likelihood above is effectively three independent beta distributions, one in each of
the parameters, such that the posterior distribution P(θ|D) becomes

P(θ|D) =

1

E
Beta(α;NT + 1, NF + 1)Beta(β;NTT + 1, NTF + 1)Beta(γ;NFF + 1, NFT + 1) ,

(12)

where we have assumed a flat prior π(θ) ∝ 1 to derive the following Bayesian evidence 187

normalisation 188

E =
Γ(NTT + 1)Γ(NTF + 1)Γ(NFT + 1)Γ(NFF + 1)

(NT + 1)(NF + 1)Γ(N + 2)
, (13)

and N = NT +NF is defined as the total number of individuals. 189

Note here that Eqs (11) and (13) may be generalised to the case where n rounds of 190

treatment have taken place. We have provided these expressions in Appendix S1. 191
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2.3 Time-dependent adherence and more general behaviour 192

2.3.1 Introducing the choice matrices 193

A significant generalisation of Eq (1) introduces the lower triangular matrices, with 194

elements CT
nn′ and CF

nn′ corresponding to the conditional probabilities of treatment and 195

non-treatment in round n given treatment and non-treatment in round n′, respectively, 196

such that 197

pn =
n−1∑
n′=1

[
CT

nn′pn′ + CF
nn′(1− pn′)

]
. (14)

We shall hereafter refer to the above matrices as ‘choice matrices’. In the proceeding 198

sections we shall demonstrate that the model parameterisation defined in Eq (14) is 199

extremely general — encapsulating all of the possible adherence behaviours illustrated 200

in Fig 1. 201

2.3.2 Lower diagonal choice matrices: the time-dependent Markov model 202

When the only nonzero elements of the choice matrices in Eq (14) are along the their 203

lower diagonals, i.e., such that only CT
nn−1 = βnn−1 6= 0 and CF

nn−1 = 1− γnn−1 6= 0, 204

the system is described by a time-dependent Markov process with recursion relation 205

pn = βnn−1pn−1 + (1− γnn−1)(1− pn−1) . (15)

Following a similar argument to the one used in solving the homogeneous Markov model 206

(which is provided in detail in Appendix S1), we may obtain a solution to Eq (15), 207

which is given by 208

pn = α
n∏

n′=2

ωn′ +
n∑

n′′=2

(1− γn′′n′′−1)
n∏

n′=n′′

ωn′ , (16)

where we have defined an important new quantity 209

ωn ≡ βnn−1 + γnn−1 − 1 . (17)

Notice, firstly, that when wn = 0 the system reverts to a time-dependent past 210

behaviour independent adherence model, i.e., without past behaviour dependence such 211

that pn = βnn−1 = 1− γnn−1. By analogy with the time-independent Markov model 212

(where ωn = λ in Eq (5)), |wn| 6= 0 signals the presence of some degree of past 213

behaviour dependent adherence behaviour. In more detail, for successive rounds over 214

which wn > 0, the system will relax towards the steady state and when wn < 0 this will 215

be accompanied by oscillatory behaviour. Note also that wn may act as an indicator for 216

the severity of adherence and non-adherence behaviour in the system — where larger 217

absolute values for wn approaching a maximum of 1 will indicate increasingly past 218

behaviour dependent behaviour. 219

At the extrema of: wn = 1, individuals repeat their past behaviour exactly and 220

indefinitely, i.e., TTTTT... and FFFFF...; and wn = −1, individuals repeat the 221

opposite of their past behaviour exactly and indefinitely, i.e., TFTFT... and FTFTF.... 222

The value of wn is therefore a useful indicator for the type of adherence behaviour in 223

the relatively general description of time-dependent Markov models. We shall use this 224

parameter to illustrate our results from the TUMIKIA project in Sec 3. 225
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2.3.3 General choice matrices: non-Markovian models 226

The most general set of causal adherence models described by Eq (14) have choice 227

matrices which take the form 228

CT =


0 0 0 . . .

CT
nn−1 0 0 . . .

CT
nn−2 CT

n−1n−2 0 . . .
...

...
...

 CF =


0 0 0 . . .

CF
nn−1 0 0 . . .

CF
nn−2 CF

n−1n−2 0 . . .
...

...
...

 , (18)

where ‘non-Markovian’ behaviour in the n-th round clearly corresponds to a past 229

behaviour dependence between rounds which exceeds the immediate last round, i.e., 230

CT,F
nn−m 6= 0 where m > 1. 231

Notice that all of the adherence models that we have identified in this work may be 232

categorised by various constraints on the elements of the choice matrices introduced in 233

Eq (14). For completeness and reference, these are 234

1. Past behaviour independent adherence that is time-independent: ∀n > 1 only 235

CT,F
nn−1 6= 0, CT

nn−1 = CF
nn−1 = c and p1 = c, giving one degree of freedom 236

multiplied by the number of independent bins for population-level heterogeneity. 237

2. Past behaviour independent adherence that is time-dependent: ∀n > 1 only 238

CT,F
nn−1 6= 0, CT

nn−1 = CF
nn−1 = cn and p1 = c1, giving n degrees of freedom 239

multiplied by the number of independent bins for population-level heterogeneity. 240

3. Markovian past behaviour dependent adherence that is time-independent: ∀n > 1 241

only CT,F
nn−1 6= 0, CT

nn−1 = β, CF
nn−1 = 1− γ and p1 = α, giving 3 degrees of 242

freedom multiplied by the number of independent bins for population-level 243

heterogeneity. 244

4. Markovian past behaviour dependent adherence that is time-dependent: ∀n > 1 245

only CT,F
nn−1 6= 0, CT

nn−1 = βnn−1, CF
nn−1 = 1− γnn−1 and p1 = α, giving 2n− 1 246

degrees of freedom multiplied by the number of independent bins for 247

population-level heterogeneity. 248

5. Non-Markovian past behaviour dependent adherence that is time-dependent: 249

∀n > 1 and ∀n′ < n only CT,F
nn′ 6= 0 and p1 = α, giving 1 + n(n− 1) degrees of 250

freedom multiplied by the number of independent bins for population-level 251

heterogeneity. 252

2.3.4 Statistical inference from data 253

The universality of the choice matrix approach suggest that it is an ideal candidate for
parameterisation of the inference problem from data and model comparison. Let the
data now correspond to a set of n-vectors D = {X} where each individual’s adherence
or non-adherence behaviour in the n-th round is recorded, such that Xn = T,F. Using
Eq (14) the full generalisation of the likelihood (which supports all of the possible
adherence models) becomes

L(D|θ) =
∏
∀Xn∈D

n∏
n′=1

{
n′−1∑
n′′=1

[
CT

nn′1Xn′=T + CF
nn′1Xn′=F

]}
, (19)

where 1A denotes an indicator function which takes value unity when condition A is 254

satisfied, else it vanishes. 255
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The large number of available degrees of freedom in Eq (19) motivates a systematic 256

approach to inferring the choice matrix components from a given set of data. We elect 257

to consider models which isolate the many degrees of freedom by constructing scenarios 258

where past behaviour dependent adherence only occurs for a single round and is past 259

behaviour dependent to only one other round — all other degrees of freedom are hence 260

set to those corresponding to time-dependent past behaviour independent adherence, i.e. 261

CT
nn′ = CF

nn′ = cn. The likelihoods and Bayesian evidence normalisations for this more 262

restricted set of models are calculated in Appendix S1. 263

2.4 Population heterogeneity in adherence (in brief) 264

The probability of adherence may vary across a population of individuals. The first 265

possible form that this heterogeneity may take can be attributed to age, gender and 266

other social factors. In such cases, stratification of the population into separate cohorts 267

for study is an appropriate tool to quantify this variation. We primarily take this 268

approach to population heterogeneity in Sec 3 and our analysis of data in Appendix S2. 269

The second possible form that population heterogeneity could take may not be 270

immediately attributable to social groupings. In such situations, it is intuitive to 271

consider that adherence probability for an individual is drawn from a distribution which 272

applies to the entire population or cohort of study. This approach is the same as used in 273

other models in the literature (see Appendix S3 for more details). We shall now briefly 274

elaborate on how one might include this form of heterogeneity in the formalism we have 275

introduced in this work through a simple, generic example. We leave further specific 276

applications of this approach to a future publication in progress. 277

To illustrate the generic effect of the population heterogeneity described above on
our individual adherence probabilities, let us consider the time-independent Markov
model we introduced earlier. The long-term probability of adherence q in Eq (7) may
itself be randomly drawn from a population heterogeneity distribution Ppop(q) for an
individual within the specified cohort of study, such that q ∼ Ppop(q). Note also that λ
in Eq (7) need not vary between individuals at the same time. Using the results given in
Eqs (8) and (9) for the same model one may deduce that the mean adherent and
non-adherent run lengths are generically modified by

E(n
T

) =
1

1− λ
Epop

(
1

1− q

)
(20)

E(n
F
) =

1

1− λ
Epop

(
1

q

)
, (21)

where Epop(·) denotes taking an expectation value with the distribution Ppop(q). Hence, 278

depending on the choice for this distribution, one may either shorten or lengthen the 279

mean run lengths across the population accordingly. Note that due to the fact that q is 280

a probability, a natural candidate for Ppop(q) is the beta distribution. 281

3 Results 282

3.1 Overview of statistical analysis 283

In the four rounds of individual adherence data from the TUMIKIA project, we have 284

split the population who traced the different possible behaviours into the standard 285

pre-school-aged children (pre-SAC, ages 0-4), school-aged children (SAC, ages 5-14) and 286

other adult age categories. Importantly, these age categories were assigned at the 287

beginning of the trial and hence — particularly in the case of pre-SAC — the effect of 288

‘ageing-out’ of each category must be considered on the overall adherence behaviour. 289
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Table 2. A measure of how past behaviour dependent the adherent and non-adherent behaviour of individuals is in the n-th
round of treatment, ωn ≡ βnn−1 + γnn−1 − 1, which was introduced in Eq (17). This value is given for each age group and
sex inferred from the TUMIKIA project dataset and is computed using the maximum likelihood values for the conditional
probabilities.

Age group ω2 (Male) ω3 (Male) ω4 (Male) ω2 (Female) ω3 (Female) ω4 (Female)

Pre-SAC 0.294 0.241 0.051 0.237 0.250 0.046
SAC 0.209 0.141 0.027 0.213 0.226 0.021
15-29 0.228 0.210 0.111 0.223 0.182 0.066
30-49 0.259 0.308 0.268 0.223 0.174 0.118
50+ 0.244 0.286 0.259 0.195 0.181 0.139

Using the symbolic representation for behaviours which we introduced in Sec 2 — 290

accepting treatment in a given round is denoted by a ‘T’, whereas not accepting 291

treatment in a given round is denoted by an ‘F’. 292

It is important to comment here on the validity of interpretating the inferences made 293

as directly due to individual behaviour patterns using the TUMIKIA project adherence 294

data [13]. An important caveat to this interpretation is that, for various reasons, some 295

individuals were not offered treatment and were hence automatically accounted for as 296

‘non-adherent’ within the data. The impact of these individuals to the success of the 297

MDA program is the same as if they had directly refused treatment, and hence the 298

practical use of inferring this pattern of adherence for simulation forecasts of MDA 299

outcome is still clear. Despite this fact, however, we cannot fairly discriminate this 300

behaviour pattern from simply not being offered treatment in the present data. 301

Using the same age categories as before and the likelihoods for the adherence models 302

which have been derived in Appendix S1, in Appendix S2 we demonstrate the 303

applicability of our model for adherence to statistical inference by performing a 304

thorough analysis of the TUMIKIA project dataset. We note that such an analysis has 305

already been performed in Ref [13], hence this analysis does not consistute the novelty 306

of the work presented here but instead is indended to illustrate the application of our 307

mathematical model. We have a detailed description of these findings in Appendix S2 308

but we provide a short written summary of our general conclusions below. 309

In Table 2 we have provided the ωn values, calculated using Eq (17), for each age 310

group and sex inferred from the TUMIKIA project dataset. This value was shown in 311

Sec 2 to be an indicator of how past behaviour dependent the adherent and 312

non-adherent behaviour of individuals is as a response to MDA treatment. We can see 313

quite clearly from Table 2 that a degree of past behaviour dependent non-adherence is 314

indeed present in all the age groups, with the exception of the final round ω4 values for 315

those in the pre-SAC (which have mostly aged into SAC by this point) and SAC 316

categories — which is to be expected due to the nature of school-based MDA, and is an 317

effect which is found and explained in more detail by Ref [13]. Table 2 also shows that 318

the most past behaviour dependent non-adherent age group and sex appears to be 319

males aged 30+. 320

In addition to these results, Eq (1) appears to provide a good descriptive model for 321

many of the past behaviour dependent non-adherent age groups and sexes, but this 322

model must be extended to an equivalent time-dependent one — see Eq (15) — in order 323

to describe other cases. 324

3.2 The impact of adherence on forecasts 325

In this section we illustrate the impact of adherence, as described by our mathematical 326

model, on the predictions made by simulations for the outcome of MDA on the chances 327
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Table 3. The positive predictive value (PPV) for elimination evaluated by fully age-structured stochastic individual-based
simulations of hookworm (with adult worm and eggs/larvae mortality rates set to µ1 = 0.5 and µ2 = 26.0 per year,
respectively and the density dependent fecundity factor is set to γ = 0.01, as considered in Ref [16]) with two different
clustered community types specified by the TUMIKIA transmission parameters inferred from the baseline epidemiological
data in Ref [16]. The parameters quoted are the endemic prevalence P , parasite aggregation parameter k, basic reproduction
number R0 and cluster population number N , where the age profiles are all assumed to be exactly flat for simplicity. The
PPVs are evaluated after 100 years post-cessation of MDA and are quoted assuming either past behaviour independent
adherence (i.e., simple time-dependent coverage in age groups) or the adherence behaviour inferred from our model in this
paper for the TUMIKIA project (see Appendix S2).

Cluster type (see Ref [16]) PPV (Past behaviour independent adherence) PPV (TUMIKIA adherence)

(P, k,R0, N) = (0.15, 0.05, 2.1, 1000) 0.582 0.148
(P, k,R0, N) = (0.4, 0.15, 2.5, 1000) 0.902 0.672

of elimination by considering the case study of TUMIKIA. The adherence models 328

learned from the statistical analysis in the previous section are applied to stochastic 329

individual-based simulations of hookworm transmission for two typical clustered 330

communities that were treated in the TUMIKIA project [16]. The resulting effect that 331

the known TUMIKIA adherence has on the positive predictive value (PPV) for 332

elimination of hookworm in these two cluster is given in Table 3, where an equivalent 333

PPV assuming past behaviour independent adherence is also provided for direct 334

comparison in each case. 335

From Table 3 it is immediately clear that although there is relatively high coverage 336

of MDA in the TUMIKIA project [11,12], the presence of observed past behaviour 337

dependent non-adherence has an important effect on the PPVs for elimination, shifting 338

the chances of hookworm elimination in both clusters lower by 43% and 23%, 339

respectively, when compared to the standard forecasts which assume past behaviour 340

independent adherence. 341

4 Discussion and conclusions 342

Despite the causes for non-adherent behaviour being varied, the net effect on the 343

outcome of MDA interventions aiming to eliminate NTDs is much the same, and hence 344

the predicted outcomes from simulation studies should also reflect this. It is for this 345

reason that in this paper we have been able to develop a simple but comprehensive 346

framework which describes the systematic binary choice of individuals to either take 347

treatment, or not for any reason, over the course of multiple rounds of mass drug 348

administration (MDA) — which we have referred to as ‘adherence’ and ‘non-adherence’, 349

respectively. 350

In Sec 2 we introduced our models for adherence which can account for new 351

behaviours that have yet to be considered in the literature. We have also demonstrated 352

that they can also reproduce the same adherence behaviours of past analyses as well in 353

Appendix S3. Our analysis further yielded an interesting parameter, ωn, given in 354

Eq (17), which can be used as a guide to indicate the strength of adherent or 355

non-adherent behaviour in any given setting. 356

In order to illustrate our framework in the context of statistical inference from a real 357

adherence dataset, we applied our probability model to the recently collected adherence 358

data from the TUMIKIA project in Kenya in Sec 3. Findings from this dataset extend 359

and support the analysis of recent work [13], which include past behaviour independent 360

adherence/non-adherence for school-aged children (SAC) and the detection of past 361

behaviour dependent non-adherence to treatment in nearly all other age groups and 362

both sexes. A full description of our results and analysis is given in Appendix S2. 363
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In Sec 3 we also commented on the validity of interpretating the inferences made as 364

directly due to individual behaviour patterns using the TUMIKIA project adherence 365

data. As we pointed out, for various reasons, some individuals were not offered 366

treatment and were hence automatically accounted for as ‘non-adherent’ within the 367

data. However, the impact of these individuals to the success of the MDA program is 368

the same as if they had directly refused treatment and hence the practical use of 369

inferring this pattern of adherence (using the formalism which we have outlined in this 370

work) for simulation forecasts of MDA outcome is still clear. We shall leave the more 371

direct inference of human behaviour in response to control measures through MDA to 372

future work with other sets of data. 373

Using the learned adherence behaviour from the TUMIKIA dataset, we then 374

demonstrated the use of our stochastic individual-based simulation model for STH 375

transmission and control by MDA by running two example forecasts for the likelihood 376

and time to the elimination of hookworm transmission with the adherence behaviour 377

recorded in Kenya by comparison with runs that assume random adherence at each 378

round of treatment for any given treatment coverage level. The difference between the 379

two assumptions are striking. And show clearly how important it is to measure 380

adherence if the outcome of any given MDA based control program is to be correctly 381

predicted. 382

WHO recommendations on how best to measure the impact of MDA programs to 383

control NTDs only advise recording patterns of treatment coverage round by round with 384

some rough stratification by age groupings treated. No advice to Ministries of Health is 385

given on trying to record adherence patterns. As we have demonstrated, the precise 386

form of the adherence pattern can greatly influence the extent of needed coverage and 387

the number of treatment rounds necessary to eliminate transmission. In part, lack of 388

guidance is understandable, given the costs and time involved in longitudinal studies to 389

record adherence of individuals within any given MDA program. However, given the 390

importance of these pattens in determining control progamme impact and outcome, 391

collecting such data should be given a higher priority even if just focused on a few 392

sentinel sites to broadly capture the prevailing behaviours in defined settings. It is likely, 393

the social, environmental and other influences will create some heterogeneity in 394

adherence patterns within countries and health implementation units. Additional 395

background research on what degree of heterogeneity exists in a given country would 396

also be of great value. In the coming few years more data on adherence patterns will 397

emerge from detailed research studies of MDA impact to add to the information 398

provided by the Tumikia study [11]. These include the ongoing DW3 trial studies in 399

India, Benin and Malawi for the control of STH [17] and the Geshiyaro study in 400

Ethiopia for the control of STH and schistosome infections by MDA [18]. 401

Supporting information 402

S1 Appendix. Extended mathematical notes. 403

S2 Appendix. TUMIKIA project analysis and figures. 404

S3 Appendix. A comparison with existing models in the literature. 405

Acknowledgements 406

The authors would like to sincerely thank Benjamin Collyer for careful reading of, and 407

useful comments on, the manuscript. RJH, JET, MW and RMA gratefully thank the 408

April 17, 2020 12/29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069476doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069476
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bill and Melinda Gates Foundation for research grant support via the DeWorm3 409

(OPP1129535) award to the Natural History Museum in London 410

(http://www.gatesfoundation.org/). The views, opinions, assumptions or any other 411

information set out in this article are solely those of the authors. All authors 412

acknowledge joint Centre funding from the UK Medical Research Council and 413

Department for International Development. 414

April 17, 2020 13/29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069476doi: medRxiv preprint 

http://www.gatesfoundation.org/
https://doi.org/10.1101/2020.04.17.20069476
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1 Appendix.

Summary. In this supplementary information we derive many of the key mathematical
expressions which are used and referred to in the main text.

Time-independent Markov model

Assuming that the conditional probabilities β and γ are constant, the time-independent
Markov model may be mapped to the following recursion relation

pn = βpn−1 + (1− γ)(1− pn−1) . (22)

As in the main text, defining the system state vector as

pn =

(
pn

1− pn

)
, (23)

we may rewrite Eq (22) above in the form pn = Mpn−1 where we have defined the
following transition matrix

M ≡
(

β 1− γ
1− β γ

)
. (24)

The eigenvalues and eigenvectors of M are given by

λ′ = 1 , v′ =
1

2− γ − β

(
1− γ
1− β

)
≡
(

q
1− q

)
, (25)

λ = β + γ − 1 , v =

(
−1
1

)
. (26)

where v′ is normalised to sum to 1. Given that |λ| < 1 in all realistic circumstances, it
is clear from this description that v represents the equilibrium of the system over
multiple rounds with λ defining the rate of relaxation towards it. When λ = 0, the
model becomes a history-independent model in which the next round is dictated solely
by its probability at that round.

In order to study the dynamics in more detail, we apply the following transformation

pn → p̃n = pn(β + γ − 1)1−n , (27)

to the relation given by Eq (22), such that

p̃n = p̃n−1 + (1− γ)(β + γ − 1)1−n . (28)

Through explicit summation, Eq (28) is solved by

p̃n − p̃1 =
n∑

n′=2

(p̃n′ − p̃n′−1) =
n∑

n′=2

(1− γ)(β + γ − 1)1−n
′
. (29)

By reapplying the inverse transformation p̃n → pn to Eq (29) and identifying
p̃1 = p1 = α, we obtain the following solution to Eq (22)

pn = α(β + γ − 1)n−1 +
n∑

n′=2

(1− γ)(β + γ − 1)n−n
′

= α(β + γ − 1)n−1 +
1− γ

β + γ − 2

[
(β + γ − 1)n−1 − 1

]
. (30)
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Fig 2. The probability of accepting treatment in the n-th round given by the
Markovian model solution in Eq (30) for a range of γ values. The other probabilities
have been fixed to α = 0.5 and β = 0.5.

Equivalently, satisfying the dual to Eq (22) in terms of the probability of non-treatment
in the n-th round 1− pn, solutions to Eq (30) must also satisfy

1− pn = (1− α)(β + γ − 1)n−1 +
1− β

β + γ − 2

[
(β + γ − 1)n−1 − 1

]
. (31)

In Fig 2 we illustrate the dynamics of the system using Eq (30) with range of parameter
values chosen for γ. Notice, in particular, that the system exhibits oscillation before
relaxing to a steady state when γ is chosen such that the eigenvalue λ = β + γ − 1 < 0.

For another way of calculating the expected lengths of repeat adherence E(n
T

) or
non-adherence E(n

F
) of an individual (as computed in the main text), given that they

begin with the same choice in the first round, one need only fix (α = β, γ = 1) or
(α = 1− γ, β = 1) and take moments with Eq (30), respectively, such that

(α = β, γ = 1) ⇒ E(nT) =

∞∑
n=0

n

(
1− pn

pn−1

)
pn−1

=
∞∑

n=0

n(1− β)βn−1 =
1

1− β
(32)

(α = 1− γ, β = 1) ⇒ E(n
F
) =

∞∑
n=0

n

(
1− 1− pn

1− pn−1

)
(1− pn−1)

=

∞∑
n=0

n(1− γ)γn−1 =
1

1− γ
. (33)

Time-dependent Markov model

Consider the choice matrices with elements CT
nn′ and CF

nn′ corresponding to the
conditional probabilities of treatment and non-treatment in round n given treatment
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and non-treatment in round n′, respectively, such that

pn =
n−1∑
n′=1

[
CT

nn′pn′ + CF
nn′(1− pn′)

]
. (34)

When the only nonzero elements of the choice matrices in Eq (34) are along the their
lower diagonals, i.e., such that only CT

nn−1 = βnn−1 6= 0 and CF
nn−1 = 1− γnn−1 6= 0,

the system is described by a time-dependent Markov process with recursion relation

pn = βnn−1pn−1 + (1− γnn−1)(1− pn−1) . (35)

Following a similar argument to the one used in solving the homogeneous Markov case,
we may obtain an implicit solution to Eq (35). Using the transformation

pn → p̃n =
pn∏n

n′=2(βn′n′−1 + γn′n′−1 − 1)
, (36)

we once again substitute into the relation given by Eq (35), yielding

p̃n = p̃n−1 +
1− γnn−1∏n

n′=2(βn′n′−1 + γn′n′−1 − 1)
, (37)

where Eq (37) is solved by the explicit summation

p̃n − p̃1 =
n∑

n′′=2

(p̃n′′ − p̃n′′−1) =
n∑

n′′=2

1− γn′′n′′−1∏n′′

n′=2(βn′n′−1 + γn′n′−1 − 1)
. (38)

Using the corresponding inverse transformation to Eq (37) we hence obtain a solution to
Eq (35), which is given by

pn = α
n∏

n′=2

(βn′n′−1+γn′n′−1−1)+
n∑

n′′=2

(1−γn′′n′′−1)
n∏

n′=n′′

(βn′n′−1+γn′n′−1−1) . (39)

Likelihoods and Bayesian evidence

Let the data now correspond to a set of n-vectors D = {X} where each individual’s
adherence or non-adherence behaviour in the n-th round is recorded, such that
Xn = T,F. Using Eq (34) the full generalisation of the likelihood (which supports all of
the possible adherence models, becomes

L(D|θ) =
∏
∀Xn∈D

n∏
n′=1

{
n′−1∑
n′′=1

[
CT

nn′1Xn′=T + CF
nn′1Xn′=F

]}
, (40)

where 1A denotes an indicator function which takes value unity when condition A is
satisfied, else it vanishes.

The large number of available degrees of freedom in Eq (40) motivates a systematic
approach to inferring the choice matrix components from a given set of data. We elect
to consider models which isolate the many degrees of freedom by constructing scenarios
where past behaviour dependent adherence only occurs for a single round and is
temporally dependent on only one other round — all other degrees of freedom are hence
set to those corresponding to time-dependent past behaviour independent adherence, i.e.
CT

nn′ = CF
nn′ = cn. The likelihood for this more restricted set of models — which we

denote as Lnn′(D|θ), where nn′ corresponds to the pair of rounds chosen to be
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dependent on each other in time — may be obtained by rewriting Eq (40) in the
following form

Lnn′(D|θ) =

(1− CT
nn′)

Zn′n
TF (CT

nn′)
Zn′n

TT (1− CF
nn′)

Zn′n
FF (CF

nn′)
Zn′n

FT

∏
∀n′′ 6=n

c
Nn′′
n′′ (1− cn′′)N−Nn′′ , (41)

where we have defined
Zn′n
AB ≡

∑
{∀X |Xn′=A, Xn=B}

NX , (42)

where the data D = {NX} has now been compressed into the set of numbers of people
who track the same behaviour as X, i.e., for 3 rounds, this forms the set of the
following numbers of people: NTTT, NTTF, NTFT, etc. The Bayesian evidence integral
corresponding to Eq (41) with a choice of flat prior π(θ) ∝ 1 is therefore

Enn′ =

∫ 1

0

(1− CT
nn′)

Zn′n
TF (CT

nn′)
Zn′n

TT

∫ 1

0

(1− CF
nn′)

Zn′n
FF (CF

nn′)
Zn′n

FT dCT
nn′dC

F
nn′

×
∏
∀n′′ 6=n

[∫ 1

0

c
Nn′′
n′′ (1− cn′′)N−Nn′′dcn′′

]

=
Γ(Zn′n

TF + 1)Γ(Zn′n
TT + 1)

Γ(Zn′n
TT + Zn′n

TF + 2)

Γ(Zn′n
FF + 1)Γ(Zn′n

FT + 1)

Γ(Zn′n
FF + Zn′n

FT + 2)

×
∏
∀n′′ 6=n

Γ(Nn′′ + 1)Γ(N −Nn′′ + 1)

Γ(N + 2)
. (43)

Some non-Markovian past dependence may be captured by the likelihood defined in
Eq (41), however their Bayesian evidence may need to be compared with equivalent
Markovian models which also generate decaying long-term correlations of a particular
form. Using the same formalism as Eq (41), the time-dependent Markov model has the
following likelihood

L(D|θ) =

αNT(1− α)NF

∏
∀n≥2

(1− CT
nn−1)Z

n−1n
TF (CT

nn−1)Z
n−1n
TT (1− CF

nn−1)Z
n−1n
FF (CF

nn−1)Z
n−1n
FT ,

(44)

and, hence, yields the following Bayesian evidence

E =

∫ 1

0

αNT(1− α)NFdα
∏
∀n≥2

∫ 1

0

(1− CT
nn−1)Z

n−1n
TF (CT

nn−1)Z
n−1n
TT

×
∫ 1

0

(1− CF
nn−1)Z

n−1n
FF (CF

nn−1)Z
n−1n
FT dCT

nn−1dCF
nn−1

=
Γ(NT + 1)Γ(NF + 1)

Γ(N + 2)

∏
∀n≥2

Γ(Zn−1n
TF + 1)Γ(Zn−1n

TT + 1)

Γ(Zn−1n
TT + Zn−1n

TF + 2)

Γ(Zn−1n
FF + 1)Γ(Zn−1n

FT + 1)

Γ(Zn−1n
FF + Zn−1n

FT + 2)
.

(45)

Eqs (44) and (45) may also be used to obtain the likelihood of the time-independent
Markov model

L(D|θ) =

αNT(1− α)NFβ
∑
∀n≥2 Zn−1n

TT (1− β)
∑
∀n≥2 Zn−1n

TF γ
∑
∀n≥2 Zn−1n

FF (1− γ)
∑
∀n≥2 Zn−1n

FT ,
(46)
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and the Bayesian evidence of the same model

E =

∫ 1

0

αNT(1− α)NFdα

∫ 1

0

β
∑
∀n≥2 Zn−1n

TT (1− β)
∑
∀n≥2 Zn−1n

TF dβ

×
∫ 1

0

γ
∑
∀n≥2 Zn−1n

FF (1− γ)
∑
∀n≥2 Zn−1n

FT dγ

=
Γ(NT + 1)Γ(NF + 1)

Γ(N + 2)

Γ
(∑

∀n≥2 Z
n−1n
TF + 1

)
Γ
(∑

∀n≥2 Z
n−1n
TT + 1

)
Γ
[∑
∀n≥2

(
Zn−1n
TT + Zn−1n

TF

)
+ 2
]

×
Γ
(∑

∀n≥2 Z
n−1n
FF + 1

)
Γ
(∑

∀n≥2 Z
n−1n
FT + 1

)
Γ
[∑
∀n≥2

(
Zn−1n
FF + Zn−1n

FT

)
+ 2
] . (47)
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S2 Appendix.

Summary. In this supplementary information we apply the framework of our
mathematical model for adherence to the TUMIKIA project [11–13] and write a brief
analysis description for each age group and sex.

Introduction

In Figs 3, 4, 5, 6 and 7 we plot the maximum likelihood as well as the limits of the
marginalised 95% credible region for the conditional probabilities given treatment (filled
points) or non-treatment (hollow points) in a previous round of the overall, male and
female participants in the top, middle and bottom rows, respectively. In the left column
the constant conditional probabilities between any given sequential pair of rounds have
been inferred, which corresponds to the time-independent Markov model of the main
text and Appendix S1. In the right column all possible round pair dependencies are
considered (indicated by the arrows on the horizontal axis), where in each case the
components corresponding to a given round were measured assuming all other
respective rounds were inferred to be from past behaviour independent adherence. In all
plots, above each pair of components we have also provided the log-Bayes factors [19],
defined by

ln Bnn′ = ln

(
Enn′
Eref

)
, (48)

where the evidence for each pair Enn′ has been evaluated using the relations provided in
Appendix S1 and the reference model evidence Eref has been set to that of
time-dependent past behaviour independent adherence for all components.

Results

In Figs 3, 4 and 5 we present our results for the pre-SAC, SAC and 15-29 age groups of
individuals in the TUMIKIA project. These age groups appear to be well-described by
a time-dependent Markov model so past behaviour dependent non-adherence is clearly
present. This may be identified by the largest log-Bayes factor values being given in the
red-coloured right column plots for all three sets of plots. However, the conditional
probabilities in all groups appear to drift closer together by round 4 of treatment, which
signals a gradual transition from past behaviour dependent to independent adherence.

In Figs 6 and 7 we present our results for the 30-49 and 50+ age groups of
individuals in the TUMIKIA project. The overall cohort, as well as the males and
females in both age groups, appear to exhibit strong evidence of past behaviour
dependent non-adherence — in particular, they are all apparently well-described by a
time-independent Markov model. These conclusions may be drawn both by the
consistent distance between all of the values for the inferred conditional probabilities
with the red points of the right column of plots, as well as the largest evidence (as
measured by the log-Bayes factor in the top row of the plots) for a difference in
conditional probabilities in the left column in both plots.

In all of the cohorts studied in Figs 3, 4, 5, 6 and 7, we report no evidence for the
existence of dependencies between rounds that depart from a Markovian description (as
can be inferred from the comparatively small log-Bayes factors for the blue and green
conditional probabilities in the right column of all plots). This is an interesting, and
perhaps surprising, result regarding the nature of human behaviour in response to mass
drug administration.
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Fig 3. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of accepting treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time dependence in the conditional probabilities of accepting
treatment in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding
to a given round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour
independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to
different lengths in time for the dependencies in behaviour. The datasets used are from the standard pre-SAC (0-4) age
category from the TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the
male sub-group; and bottom row corresponds to the female sub-group.
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Fig 4. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of accepting treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time-dependent in the conditional probabilities of accepting treatment
in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given
round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour
independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to
different lengths in time for the dependencies in behaviour. The datasets used are from the standard SAC (4-15) age category
from the TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the male
sub-group; and bottom row corresponds to the female sub-group.
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Fig 5. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of accepting treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time-dependent in the conditional probabilities of accepting treatment
in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given
round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour
independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to
different lengths in time for the dependencies in behaviour. The datasets used are from the 15-29 age category from the
TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the male sub-group; and
bottom row corresponds to the female sub-group.
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Fig 6. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of accepting treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time dependence in the conditional probabilities of accepting
treatment in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding
to a given round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour
independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to
different lengths in time for the dependencies in behaviour. The datasets used are from the 30-49 age category from the
TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the male sub-group; and
bottom row corresponds to the female sub-group.

April 17, 2020 23/29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069476doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069476
http://creativecommons.org/licenses/by-nc-nd/4.0/


C
on

di
tio

na
l P

ro
ba

bi
lit

y

MDA round:   n         n + 1             n         n + 1
T T F T

 1   2   3   4    1   2   3   4    1   2   3   4    1   2   3   4     1   2   3   4    1   2   3   4 

C
on

di
tio

na
l P

ro
ba

bi
lit

y

C
on

di
tio

na
l P

ro
ba

bi
lit

y

MDA round:   n         n + 1             n         n + 1
T T F T

 1   2   3   4    1   2   3   4    1   2   3   4    1   2   3   4     1   2   3   4    1   2   3   4 

C
on

di
tio

na
l P

ro
ba

bi
lit

y

C
on

di
tio

na
l P

ro
ba

bi
lit

y

MDA round:   n         n + 1             n         n + 1
T T F T

 1   2   3   4    1   2   3   4    1   2   3   4    1   2   3   4     1   2   3   4    1   2   3   4 

C
on

di
tio

na
l P

ro
ba

bi
lit

y

Fig 7. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of accepting treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time dependence in the conditional probabilities of accepting
treatment in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding
to a given round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour
independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to
different lengths in time for the dependencies in behaviour. The datasets used are from the 50+ age category from the
TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the male sub-group; and
bottom row corresponds to the female sub-group.
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S3 Appendix.

Summary. In this supplementary information, we analyse some of the existing models
of adherence from the literature in the context of our proposed framework.

The Plaisier model

Several models of MDA treatment programs employ an adherence model developed by
Plaisier in the context of onchocerciasis control [8, 20]. The Plaisier model assigns a
probability of adherence to each individual which they then retain for the duration of
the MDA program [14,15]. As such, this model would be characterised by us as a
heterogeneous population, time-independent model with no explicit individual
dependence on past behaviour. The individual probability of adherence is given by
U (1−c)/c, where U is a uniform random number and c is expected probability of
treatment and hence the expected coverage. The model is therefore completely
parameterized by the overall expected coverage. The PDF for the adherence probability
for this process is given by

π(p) =
c

1− c
p(2c−1)/(1−c) . (49)

The PDF of p rises monotonically from zero to one for all values of c > 0.5 and falls
monotonically for c < 0.5 (for c = 0.5, it is flat). Note that π(p) is a beta distribution:
π(p) = Beta[p; c/(1− c), 1]. For this distribution, the mean failure run length is hence
given by

E(nF) =
c

2c− 1
. (50)

Note that in this model, adherence failure run length becomes undefined at a coverage
of 50% or less. Additionally, one can show that the variance of this random variable
becomes undefined for values of coverage below 66%, suggesting that failure run lengths
in finite populations drawn from this distribution will exhibit extreme variability.

The probability of an individual being untreated across N rounds of MDA in this
model can also be calculated, giving

πun =

∫ 1

0

(1− p)NBeta[p; c/(1− c), 1] dp =
c

1− c
B[c/(1− c), N + 1] , (51)

where B(·, ·) is the beta function. Fig 8 shows the distribution of adherence
probabilities for 2 different coverage values and also the probability of an individual not
adhering with treatment across a 4-round MDA program.

The Griffin Model

The adherence model used by Irvine et al [5] to model MDA adherence in the treatment
of lymphatic filariasis was originally created by Griffin et al in the context of intevention
strategies against malaria transmission [21]. The original Griffin model is quite broad
and deals with multiple simultaneous interventions and the correlations in their uptake.
It does not include conditional dependencies for an individual’s behaviour and is
therefore a heterogeneous population, time-independent, individually past behaviour
independent model in its simplest form. Each individual in the population is assigned a
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Fig 8. A) Probability of an individual with adherence drawn from the Plaisier distribution of not adhering with treatment
during a 4 round MDA program. B) The probability distribution for adherence for coverages of 25% and 75%.

correlation parameter, ui, drawn from a normal distribution with mean u0 and variance
σ2. These parameters are retained throughout the MDA program. At each round a
MDA round, each individual draws a unit-variance normal deviate with mean ui, z.
Treatment is accepted if z < 0. The expected coverage is given by φ(−u0/

√
1 + σ2),

where φ is the standard normal cumulative probability function. This leaves one free
parameter to control the distribution of adherence probabilities across the population.

The cumulative distribution of adherence probability, p, is given by

π(p) = φ[φ−1(p; 0, 1) + u0; 0, σ2] , (52)

giving a PDF

P (p) ∝ exp

[
−1− σ2

2σ2

(
φ−1(p) +

u0
1− σ2

)2
]
. (53)

The function φ−1(p; 0, 1) varies monotonically in the range (−∞,∞) with p. In Eq (53),
the parameter σ = 1 acts to discriminate between two functional forms. For σ < 1, the
distribution has a ‘normal’ shape with a single local maximum, while for σ > 1, the
distribution has asymptotes with local maxima at the p = 0 and/or 1. In this, it is very
similar, qualitatively, to the beta distribution (see Fig 9).
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