79 research outputs found

    Physical modeling of spent-nuclear-fuel container

    Get PDF
    A new physical simulation model was developed to simulate the casting process of the ductile iron heavy section spent-nuclear-fuel container. In this physical simulation model, a heating unit with DR24 Fe-Cr-Al heating wires was used to compensate the heat loss across the non-natural surfaces of the sample, and a precise and reliable casting temperature controlling/monitoring system was employed to ensure the thermal behavior of the simulated casting to be similar to the actual casting. Also, a mould system was designed, in which changeable mould materials can be used for both the outside and inside moulds for different applications. The casting test was carried out with the designed mould and the cooling curves of central and edge points at different isothermal planes of the casting were obtained. Results show that for most isothermal planes, the temperature control system can keep the temperature differences within 6 ℃ between the edge points and the corresponding center points, indicating that this new physical simulation model has high simulation accuracy, and the mould developed can be used for optimization of casting parameters of spent-nuclear-fuel container, such as composition of ductile iron, the pouring temperature, the selection of mould material and design of cooling system. In addition, to maintain the spheroidalization of the ductile iron, the force-chilling should be used for the current physical simulation to ensure the solidification of casting in less than 2 h

    Near-field acoustic holography for high-frequency weak sound sources under low signal-to-noise ratio

    Get PDF
    The mechanical noise in the cabin of the ship is so large that the leakage of high-pressure fluid is not easily noticed. In view of this situation, a near-field acoustic holography for high-frequency weak sound source under low signal-to-noise ratio is proposed. The method uses the empirical mode decomposition method to add weights to the time-domain sampling signals of each array element, and then uses the plane equivalent source near-field acoustic holography combined with compressive sensing to find the holographic surface acoustic pressure distribution. The simulation and experiment show that this method has certain feasibility under low signal-to-noise ratio, and the results are better than the method based on Fourier transform and the traditional boundary element method. It is of positive significance to apply it to engineering practice

    The coherent sound field separation method combining compressive sensing

    Get PDF
    When multiple coherent sound sources are distributed on the same side of the holographic surface, the conventional method must use known information such as sound source distribution and geometry. In view of this situation, a method of coherent sound field separation combined with compressive sensing is proposed. The method is based on the plane equivalent source near-field acoustic holography method and the orthogonal matching pursuit algorithm of compressive sensing technology. Get the distribution of the virtual sound source on the plane, and then the virtual sound sources are grouped and selected. Finally, the distribution of sound pressure in the near-field plane after separation of the sound field is calculated using the conduction matrix. The method does not require other prior knowledge. The simulation results show that this method can be used as an effective complementary method for coherent sound field separation based on single-sided measurement

    Source localization in reverberation environment based on improved equivalent sound source near-field acoustic holography algorithm

    Get PDF
    The compressive-equivalent source method near-field acoustic holography (C-ESM) is disturbed by reverberation in the enclosed space such as room and cabin, which leads to large reconstruction error and disturbs the judgment of sound source position. In order to solve this problem, an improved C-ESM algorithm based on room impulse response (RIR) is proposed to filter out reverberation interference in this paper. Different from the original equivalent source method, the improved algorithm constructs the transfer function through the room impulse response to establish the relationship between the equivalent source and the sound pressure on any plane in space, and the sparse signal reconstruction method of the compressive sensing technology is used to obtain the strength of the equivalent source. Then the transfer function to any plane of space is established according to the free field Green’s function, to eliminate the interference of reverberation and improve the effect of sound source location. The accuracy and effectiveness of the improved method are verified by preliminary numerical simulation. And the results show that compared with the original algorithm, this method has obvious advantages in sound source localization in a reverberant field

    Research on vibration characteristics of marine power-spilt gear system

    Get PDF
    In order to carry out a more in-depth study on the vibration characteristics of the marine power-spilt gear system, a nonlinear dynamic model of a certain type of marine gearbox was established, taking into account factors such as dynamic backlash and time-varying mesh stiffness. The numerical simulation method was used to calculate the variation of the system vibration response with input speed, the torsional stiffness of the linkage shaft and the stiffness of the output shaft under different backlach. The results show that the system will occur resonance as the input speed increases; the torsional stiffness of the linkage axis has an optimal value, so that the vibration response amplitude of the system is the smallest; as the support stiffness of the output shaft increases, the vibration acceleration of the output shaft does not change much, while the vibration displacement is significantly reduced

    A new method calculating load balance of sliding bearing by using neural network PID algorithm

    Get PDF
    Aiming at low efficiency of existing sliding bearing load balance calculation, a new method that based on neural network proportional-integral-derivative (PID) algorithm is proposed for the first time, in which a compound control algorithm combining neural network and PID algorithm is applied. In this new method, the load error is taken as the input of the system, and the eccentricity of the bearing is used as the input of the controller, and the output of the system is the oil film force of the bearing. Comparing with traditional method, calculation results show that: the number of iterations calculated by neural network PID algorithm is less than traditional one and has higher efficiency and stronger adaptability under different loads

    CCND1 as a Predictive Biomarker of Neoadjuvant Chemotherapy in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma

    Get PDF
    BACKGROUND: Cyclin D1 (CCND1) has been associated with chemotherapy resistance and poor prognosis. In this study, we tested the hypothesis that CCND1 expression determines response and clinical outcomes in locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated with neoadjuvant chemotherapy followed by surgery and radiotherapy. METHODOLOGY AND FINDINGS: 224 patients with HNSCC were treated with either cisplatin-based chemotherapy followed by surgery and radiotherapy (neoadjuvant group, n = 100) or surgery and radiotherapy (non-neoadjuvant group, n = 124). CCND1 expression was assessed by immunohistochemistry. CCND1 levels were analyzed with chemotherapy response, disease-free survival (DFS) and overall survival (OS). There was no significant difference between the neoadjuvant group and non-neoadjuvant group in DFS and OS (p = 0.929 and p = 0.760) when patients treated with the indiscriminate administration of cisplatin-based chemotherapy. However, in the neoadjuvant group, patients whose tumors showed a low CCND1 expression more likely respond to chemotherapy (p<0.001) and had a significantly better OS and DFS than those whose tumors showed a high CCND1 expression (73% vs 8%, p<0.001; 63% vs 6%, p<0.001). Importantly, patients with a low CCND1 expression in neoadjuvant group received more survival benefits than those in non-neoadjuvant group (p = 0.016), however patients with a high CCND1 expression and treated with neoadjuvant chemotherapy had a significantly poor OS compared to those treated with surgery and radiotherapy (p = 0.032). A multivariate survival analysis also showed CCND1 expression was an independent predictive factor (p<0.001). CONCLUSIONS: This study suggests that some but not all patients with HNSCC may benefit from neoadjuvant chemotherapy with cisplatin-based regimen and CCND1 expression may serve as a predictive biomarker in selecting patients undergo less than two cycles of neoadjuvant chemotherapy

    The role of adaptive strategies in plant naturalization

    No full text
    3004 species with information of Pierce et al.'s CSR scores, presence in the GloNAF database, GloNAF regions, etc.<div><br></div><div><br></div><div>Guo W-Y, van Kleunen M, Winter M, Weigelt P, Stein A, Pierce S, Pergl J Moser D, Maurel N, Lenzner B, Kreft H, Essl F, Dawson W & Pyšek P (2018) The role of adaptive strategies in plant naturalization. Ecology Letters, doi: 10.1111/ele.13104<br></div

    The role of adaptive strategies in plant naturalization

    No full text
    3004 species with information of Pierce et al. CSR scores, presence in the GloNAF database, GlonAF regions, etc.<div><br></div><div>Guo W-Y, van Kleunen M, Winter M, Weigelt P, Stein A, Pierce S, Pergl J Moser D, Maurel N, Lenzner B, Kreft H, Essl F, Dawson W & Pyšek P (2018) The role of adaptive strategies in plant naturalization. Ecology Letters, doi: 10.1111/ele.13104<br></div
    • …
    corecore