660 research outputs found

    Complex karyotypes in flow cytometrically DNA-diploid squamous cell carcinomas of the head and neck.

    Get PDF
    In squamous cell carcinoma of the head and neck (SCCHN), DNA ploidy as determined by flow cytometry (FCM) has been found to yield prognostic information but only for tumours at oral sites. Cytogenetic findings have indicated complex karyotype to be a correlate of poor clinical outcome. In the present study, 73 SCCHN were investigated with the two techniques. Aneuploid cell populations were identified in 49 (67%) cases by FCM but in only 21 (29%) cases by cytogenetic analysis. The chromosome index (CI), calculated as the mean chromosome number divided by 46, was compared with the respective DNA index (DI) obtained by FCM in 15 tumours, non-diploid according to both techniques, DI being systematically 12% higher than CI in this subgroup. Eight (33%) of the 24 tumours diploid according to FCM had complex karyotypes, three of the tumours being cytogenetically hypodiploid, three diploid and two non-diploid. The findings in the present study may partly explain the low prognostic value of ploidy status as assessed by FCM that has been observed in SCCHN. In addition, we conclude that FCM yields information of the genetic changes that is too unspecific, and that cytogenetic analysis shows a high rate of unsuccessful investigations, thus diminishing the value of the two methods as prognostic factors in SCCHN

    Identification of novel regulators of STAT3 activity

    Get PDF
    STAT3 mediates signalling downstream of cytokine and growth factor receptors where it acts as a transcription factor for its target genes, including oncogenes and cell survival regulating genes. STAT3 has been found to be persistently activated in many types of cancers, primarily through its tyrosine phosphorylation (Y705). Here, we show that constitutive STAT3 activation protects cells from cytotoxic drug responses of several drug classes. To find novel and potentially targetable STAT3 regulators we performed a kinase and phosphatase siRNA screen with cells expressing either a hyperactive STAT3 mutant or IL6-induced wild type STAT3. The screen identified cell division cycle 7-related protein kinase (CDC7), casein kinase 2, alpha 1 (CSNK2), discoidin domain-containing receptor 2 (DDR2), cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 4-kinase 2-alpha (PI4KII), C-terminal Src kinase (CSK) and receptor-type tyrosine-protein phosphatase H (PTPRH) as potential STAT3 regulators. Using small molecule inhibitors targeting these proteins, we confirmed dose and time dependent inhibition of STAT3-mediated transcription, suggesting that inhibition of these kinases may provide strategies for dampening STAT3 activity in cancers.Peer reviewe

    Toward universal protein post-translational modification detection in high throughput format

    Get PDF
    Post-translational modification (PTM) of proteins plays essential regulatory roles in a variety of pathological conditions. Reliable and practical assays are required to accelerate the discovery of inhibitors and activators for PTM related diseases. Today, methodologies are based on specific or group-specific PTM recognition of e.g. phosphate for kinase activity without extending to other type of PTMs. Here we have established a universal time-resolved luminescence assay on a peptide-break platform for the direct detection of wide variety of PTMs. The developed assay is based on the leucine zipper concept wherein a europium-chelate labeled detection peptide and a non-labeled peptide substrate form a highly luminescent dimer. As an active PTM enzyme at sub or low nanomolar concentration modifies the substrate peptide, the luminescent signal of the detached detection peptide is quenched in the presence of soluble quenchers. The functionality of this universal assay technique has been demonstrated for the monitoring of phosphorylation, dephosphorylation, deacetylation, and citrullination with high applicability also to other PTMs in a high throughput format.Peer reviewe

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    The Ras superfamily at a glance

    Get PDF
    The Ras superfamily of small guanosine triphosphatases (GTPases) comprise over 150 human members (Table S1 in [supplementary material][1]), with evolutionarily conserved orthologs found in Drosophila, C. elegans, S. cerevisiae, S. pombe, Dictyostelium and plants ([Colicelli, 2004][2]). The Ra
    • …
    corecore