82 research outputs found

    The future of mammary stem cell biology: the power of in vivo transplants

    Get PDF
    The recent review by Smith and Medina [1] of in vivo transplantation models and their role in investigating mammary stem cell (MaSC) biology provides comprehensive coverage of the history and complexity of the ‘gold standard ’ MaSC assay in mice. This includes a description of the pioneering studies that showed that mammary epithelial outgrowths can be generated in cleared mammary fat pads transplanted with explants or admixtures of mammary cells [2]. However, this approach clearly does not lend itself to prospective analysis of isolated subpopulations in order to identify which cells possess in vivo regenerative activity. More recently, success in obtaining complex mammary gland structures from transplanted suspensions of single cells has now made this possible [3-7]. Moreover, the regenerated structures have been shown to contain daughter cells with the same in viv

    CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells

    Get PDF
    INTRODUCTION: Breast cancer is thought to arise in mammary epithelial stem cells. There is, therefore, a large amount of interest in identifying these cells. The breast is a complex tissue consisting of two epithelial layers (an outer myoepithelial/basal layer and an inner luminal epithelial layer) as well as a large non-epithelial component (fibroblasts, endothelial cells, lymphocytes, adipocytes, neurons and myocytes). The definitive identification of a mammary epithelial stem cell population is critically dependent on its purity. To date, this has been hampered by the lack of suitable markers to separate out the two epithelial layers, and to remove contaminating non-epithelial cells. METHODS: Mouse mammary glands were dissociated and stained with CD24. Cells were sorted into separate populations based on CD24 expression and assessed for luminal epithelial and myoepithelial/basal markers by direct fluorescent microscopy and real time PCR. The stem/progenitor potential of these cell populations was assessed in vivo by cleared mammary fat pad transplantation. RESULTS: Three populations of CD24 expressing cells were identified: CD24(Negative), CD24(Low )and CD24(High). Staining of these cells with cytokeratin markers revealed that these populations correspond to non-epithelial, myoepithelial/basal and luminal epithelial cells, respectively. Cell identities were confirmed by quantitative PCR. Cleared mammary fat pad transplantation of these cell populations revealed that extensive mammary fat pad repopulation capacity segregates with the CD24(Low )cells, whilst CD24(High )cells have limited repopulation capacity. CONCLUSION: Differential staining of mammary epithelial cells for CD24 can be used to simultaneously isolate pure populations of non-epithelial, myoepithelial/basal and luminal epithelial cells. Furthermore, mammary fat pad repopulation capacity is enriched in the CD24(Low )population. As separation is achieved using a single marker, it will be possible to incorporate additional markers to further subdivide these populations. This will considerably facilitate the further analysis of mammary epithelial subpopulations, whilst ensuring high purity, which is key for understanding mammary epithelial stem cells in normal tissue biology and carcinogenesis

    Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU

    Full text link
    Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so that older ('immortal') DNA strands are retained in daughter stem cells whereas newly synthesized strands segregate to differentiating cells(1-6). Stem cells are also proposed to retain DNA labels, such as 5-bromo-2-deoxyuridine (BrdU), either because they segregate chromosomes asymmetrically or because they divide slowly(5,7-9). However, the purity of stem cells among BrdU-label-retaining cells has not been documented in any tissue, and the 'immortal strand hypothesis' has not been tested in a system with definitive stem cell markers. Here we tested these hypotheses in haematopoietic stem cells (HSCs), which can be highly purified using well characterized markers. We administered BrdU to newborn mice, mice treated with cyclophosphamide and granulocyte colony-stimulating factor, and normal adult mice for 4 to 10 days, followed by 70 days without BrdU. In each case, less than 6% of HSCs retained BrdU and less than 0.5% of all BrdU-retaining haematopoietic cells were HSCs, revealing that BrdU has poor specificity and poor sensitivity as an HSC marker. Sequential administration of 5-chloro-2-deoxyuridine and 5-iodo-2-deoxyuridine indicated that all HSCs segregate their chromosomes randomly. Division of individual HSCs in culture revealed no asymmetric segregation of the label. Thus, HSCs cannot be identified on the basis of BrdU-label retention and do not retain older DNA strands during division, indicating that these are not general properties of stem cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62821/1/nature06115.pd

    Functional and molecular characterisation of mammary side population cells

    Get PDF
    BACKGROUND: Breast cancer is thought to arise in mammary epithelial stem cells. However, the identity of these stem cells is unknown. METHODS: Studies in the haematopoetic and muscle systems show that stem cells have the ability to efflux the dye Hoechst 33342. Cells with this phenotype are referred to as the side population (SP). We have adapted the techniques from the haematopoetic and muscle systems to look for a mammary epithelial SP. RESULTS: Of mammary epithelial cells isolated from both the human and mouse mammary epithelia, 0.2–0.45% formed a distinct SP. The SP was relatively undifferentiated but grew as typical differentiated epithelial clones when cultured. Transplantation of murine SP cells at limiting dilution into cleared mammary fat pads generated epithelial ductal and lobuloalveolar structures. CONCLUSION: These data demonstrate the existence of an undifferentiated SP in human and murine mammary epithelium. Purified SP cells are a live single-cell population that retain the ability to differentiate in vitro and in vivo. Studies of haematopoetic cells have suggested that the SP phenotype constitutes a universal stem cell marker. This work therefore has implications for mammary stem cell biology

    Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment

    Get PDF
    Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors
    • …
    corecore