68 research outputs found
A new framework for assessing the contributions of professionals in the natural sciences
No abstract available
A new route to tricyclane sesquiterpenoids: total synthesis of α-ekasantalic acid
YesChemical manipulation of the cycloadduct of citraconic anhydride and cyclopentadiene enables a new synthetic route to tricyclane sesquiterpenoids. This methodology is applied to the first total synthesis of α-ekasantalic acid.Spanish Ministry of Education, Culture and Sport for financial support (grant number TME2011-00267 (LL))
Differential Requirement for Utrophin in the Induced Pluripotent Stem Cell Correction of Muscle versus Fat in Muscular Dystrophy Mice
Duchenne muscular dystrophy (DMD) is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs) into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin). In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent) non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle
Natural History Collections as Emerging Resources for Innovative Education
There is an emerging consensus that undergraduate biology education in the United States is at a crucial juncture, especially as we acknowledge the need to train a new generation of scientists to meet looming environmental and health crises. Digital resources for biology now available online provide an opportunity to transform biology curricula to include more authentic and inquiry-driven educational experiences. Digitized natural history collections have become tremendous assets for research in environmental and health sciences, but, to date, these data remain largely untapped by educators. Natural history collections have the potential to help transform undergraduate science education from passive learning into an active exploration of the natural world, including the exploration of the complex relationships among environmental conditions, biodiversity, and human well-being. By incorporating natural history specimens and their associated data into undergraduate curricula, educators can promote participatory learning and foster an understanding of essential interactions between organisms and their environments
- …