123 research outputs found
Observation of force-detected nuclear magnetic resonance in a homogeneous field
We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present H-1 and F-19 NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a H-1-F-19 J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to µm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the µm and nm scales
Sub-Riemannian Geometry and Time Optimal Control of Three Spin Systems: Quantum Gates and Coherence Transfer
Many coherence transfer experiments in Nuclear Magnetic Resonance
Spectroscopy, involving network of coupled spins, use temporary spin-decoupling
to produce desired effective Hamiltonians. In this paper, we show that
significant time can be saved in producing an effective Hamiltonian, if
spin-decoupling is avoided. We provide time optimal pulse sequences for
producing an important class of effective Hamiltonians in three spin networks.
These effective Hamiltonians are useful for coherence transfer experiments and
implementation of quantum logic gates in NMR quantum computing. It is
demonstrated that computing these time optimal pulse sequences can be reduced
to geometric problems that involve computing sub-Riemannian geodesics on
Homogeneous spaces
An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR
Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs/GaAs heterojunction. NMR linewidths down to 4.1 Hz full width at half maximum were obtained, a 10^3-fold resolution enhancement relative any previous optically detected NMR experiment
Force-detected nuclear magnetic resonance: Recent advances and future challenges
We review recent efforts to detect small numbers of nuclear spins using
magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM)
is a scanning probe technique that relies on the mechanical measurement of the
weak magnetic force between a microscopic magnet and the magnetic moments in a
sample. Spurred by the recent progress in fabricating ultrasensitive force
detectors, MRFM has rapidly improved its capability over the last decade. Today
it boasts a spin sensitivity that surpasses conventional, inductive nuclear
magnetic resonance detectors by about eight orders of magnitude. In this review
we touch on the origins of this technique and focus on its recent application
to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale
objects with a three-dimensional (3D) spatial resolution better than 10 nm. We
consider the experimental advances driving this work and highlight the
underlying physical principles and limitations of the method. Finally, we
discuss the challenges that must be met in order to advance the technique
towards single nuclear spin sensitivity -- and perhaps -- to 3D microscopy of
molecules with atomic resolution.Comment: 15 pages & 11 figure
Fourier transform pure nuclear quadrupole resonance by pulsed field cycling
We report the observation of Fourier transform pure NQR by pulsed field cycling. For deuterium, well resolved spectra are obtained with high sensitivity showing the low frequency nu0 lines and allowing assignments of quadrupole couplings and asymmetry parameters to inequivalent deuterons. The technique is ideally applicable to nuclei with low quadrupolar frequencies (e.g., 2D, 7Li, 11B, 27Al, 23Na, 14N) and makes possible high resolution structure determination in polycrystalline or disordered materials
Time Optimal Control in Spin Systems
In this paper, we study the design of pulse sequences for NMR spectroscopy as
a problem of time optimal control of the unitary propagator. Radio frequency
pulses are used in coherent spectroscopy to implement a unitary transfer of
state. Pulse sequences that accomplish a desired transfer should be as short as
possible in order to minimize the effects of relaxation and to optimize the
sensitivity of the experiments. Here, we give an analytical characterization of
such time optimal pulse sequences applicable to coherence transfer experiments
in multiple-spin systems. We have adopted a general mathematical formulation,
and present many of our results in this setting, mindful of the fact that new
structures in optimal pulse design are constantly arising. Moreover, the
general proofs are no more difficult than the specific problems of current
interest. From a general control theory perspective, the problems we want to
study have the following character. Suppose we are given a controllable right
invariant system on a compact Lie group, what is the minimum time required to
steer the system from some initial point to a specified final point? In NMR
spectroscopy and quantum computing, this translates to, what is the minimum
time required to produce a unitary propagator? We also give an analytical
characterization of maximum achievable transfer in a given time for the two
spin system.Comment: 20 Pages, 3 figure
Vibrational dephasing in molecular mixed crystals:a picosecond time domain CARS study of pentacene in naphthalene and benzoic acid
Multiresonant time-domain coherent anti-Stokes Raman scattering (CARS) experiments have been employed in a study of the decay of vibrational coherences of pentacene doped into naphthalene and benzoic acid. In all cases, the CARS decay is found to be exponential, which indicates that the electronic and vibronic inhomogeneities in this system are strongly correlated. The temperature dependence of vibrational dephasing shows no effect of coupling to the lowest-frequency librational mode of pentacene that is known to dominate electronic dephasing. This surprising result can be understood on basis of a dephasing model where rapid coherence exchange exists between a cold vibrational transition and a corresponding near-resonant librationally hot one. For the 767 cm–1 vibrational transition, oscillations of the CARS signal as a function of delay are shown to arise from interference at the detector with a nearby naphthalene host signal. An inconsistency with a previously reported spontaneous Raman study is resolved by showing that the signal observed there is actually site-selected fluorescence
New approaches to ultrasensitive magnetic resonance
Spectroscopic methods tend to exhibit an inverse correlation between sensitivity and the ability to discriminate between similar structures. Were they obtainable with adequate sensitivity, magnetic resonance spectra could resolve structural controversies involving the nature of clusters, ions, semiconductor defects and catalytic intermediates. This paper describes several novel approaches to magnetic resonance, which have in common that the spins are coupled to other degrees of freedom in order to obtain nonequilibrium polarization and/or greater detection sensitivity. The methods under development include single-ion electron spin resonance (ESR) detected by ion trapping frequencies, catalyst NMR detected by the branching ratio to different spin symmetry species, and semiconductor nuclear magnetic resonance (NMR) detected via the circular polarization of luminescence
PASADENA Hyperpolarization of Succinic Acid for MRI and NMR Spectroscopy
We use the PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) method to achieve ^(13)C polarization of ∼20% in seconds in 1-^(13)C-succinic-d_2 acid. The high-field ^(13)C multiplets are observed as a function of pH, and the line broadening of C1 is pronounced in the region of the pK values. The ^2J_(CH), ^3J_(CH), and ^3J_(HH) couplings needed for spin order transfer vary with pH and are best resolved at low pH leading to our use of pH ∼3 for both the molecular addition of parahydrogen to 1-^(13)C-fumaric acid-d_2 and the subsequent transfer of spin order from the nascent protons to C1 of the succinic acid product. The methods described here may generalize to hyperpolarization of other carboxylic acids. The C1 spin−lattice relaxation time at neutral pH and 4.7 T is measured as 27 s in H_2O and 56 s in D_2O. Together with known rates of succinate uptake in kidneys, this allows an estimate of the prospects for the molecular spectroscopy of metabolism
Total spin coherence transfer echo spectroscopy
The sensitivity of multiple quantum NMR transitions to magnetic field inhomogeneity and the relative phases and amplitudes of multiple quantum lines are discussed. The technique of total spin coherence transfer echo spectroscopy (TSCTES) is described and experimentally demonstrated. The TSCTES method allows multiple quantum spectra to be obtained which are free of inhomogeneous magnet broadening, yet remain sensitive to spin–spin couplings and chemical shift differences. The method takes advantage of the properties of the total spin coherence, the unique transition between the extreme eigenstates of a coupled spin system. Experimental results are reported for partially oriented acetaldehyde and are analyzed in terms of irreducible tensor operators. Limitations on the method and extensions to heteronuclear spin systems are also discussed
- …
