6 research outputs found

    4D Reconstruction of Tangible Cultural Heritage Objects from Web-Retrieved Images

    No full text
    The number of digital images that are available online today has reached unprecedented levels. Recent statistics showed that by the end of 2013 there were over 250 billion photographs stored in just one of the major social media sites, with a daily average upload of 300 million photos. These photos, apart from documenting personal lives, often relate to experiences in well-known places of cultural interest, throughout several periods of time. Thus from the viewpoint of Cultural Heritage professionals, they constitute valuable and freely available digital cultural content. Advances in the fields of Photogrammetry and Computer Vision have led to significant breakthroughs such as the Structure from Motion algorithm which creates 3D models of objects using their 2D photographs. The existence of powerful and affordable computational machinery enables the reconstruction not only of single structures such as artefacts, but also of entire cities. This paper presents an overview of our methodology for producing cost-effective 4D – i.e. in space and time – models of Cultural Heritage structures such as monuments and artefacts from 2D data (pictures, video) and semantic information, freely available ‘in the wild’, i.e. in Internet repositories and social media. State-of-the-art methods from Computer Vision, Photogrammetry, 3D Reconstruction and Semantic representation are incorporated in an innovative workflow with the main goal to enable historians, architects, archaeologists, urban planners and other cultural heritage professionals to reconstruct cost-effective views of historical structures out of the billions of free images floating around the web and subsequently interact with those reconstructions

    Cloud-based 3D Reconstruction of Cultural Heritage Monuments using Open Access Image Repositories

    No full text
    A large number of photographs of cultural heritage items and monuments is publicly available in various Open Access Image Repositories (OAIR) and social media sites. Metadata inserted by camera, user and host site may help to determine the photograph content, geo-location and date of capture, thus allowing us, with relative success, to localise photos in space and time. Additionally, developments in Photogrammetry and Computer Vision, such as Structure from Motion (SfM), provide a simple and cost-effective method of generating relatively accurate camera orientations and sparse and dense 3D point clouds from 2D images. Our main goal is to provide a software tool able to run on desktop or cluster computers or as a back end of a cloud-based service, enabling historians, architects, archaeologists and the general public to search, download and reconstruct 3D point clouds of historical monuments from hundreds of images from the web in a cost-effective manner. The end products can be further enriched with metadata and published. This paper describes a workflow for searching and retrieving photographs of historical monuments from OAIR, such as Flickr and Picasa, and using them to build dense point clouds using SfM and dense image matching techniques. Computational efficiency is improved by a technique which reduces image matching time by using an image connectivity prior derived from low-resolution versions of the original images. Benchmarks for two large datasets showing the respective efficiency gains are presented

    4D reconstruction of the past: The image retrieval and 3D model construction pipeline

    No full text
    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Our main goal is to enable historians, architects, archaeolo- gists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web. This paper aims to provide an update of our progress in designing and imple- menting a pipeline for searching, filtering and retrieving photographs from Open Access Image Repositories and social media sites and using these images to build accurate 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EU- ROPEANA. We provide details of how our implemented software searches and retrieves images of archaeological sites from Flickr and Picasa repositories as well as strategies on how to filter the results, on two levels; a) based on their built-in metadata including geo-location information and b) based on image processing and clustering techniques. We also describe our implementation of a Structure from Motion pipeline designed for producing 3D models using the large collection of 2D input images (>1000) retrieved from Internet Repositories.Euro-agriwot,European Cooperation in Science and Technology (COST),Geosystems Hellas,Intergraph,Li-Co

    4D reconstruction of the past: The image retrieval and 3D model construction pipeline

    No full text
    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Our main goal is to enable historians, architects, archaeolo- gists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web. This paper aims to provide an update of our progress in designing and imple- menting a pipeline for searching, filtering and retrieving photographs from Open Access Image Repositories and social media sites and using these images to build accurate 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EU- ROPEANA. We provide details of how our implemented software searches and retrieves images of archaeological sites from Flickr and Picasa repositories as well as strategies on how to filter the results, on two levels; a) based on their built-in metadata including geo-location information and b) based on image processing and clustering techniques. We also describe our implementation of a Structure from Motion pipeline designed for producing 3D models using the large collection of 2D input images (>1000) retrieved from Internet Repositories.Euro-agriwot,European Cooperation in Science and Technology (COST),Geosystems Hellas,Intergraph,Li-Co

    Online 4d reconstruction using multi-images available under open access

    Get PDF
    The advent of technology in digital cameras and their incorporation into virtually any smart mobile device has led to an explosion of the number of photographs taken every day. Today, the number of images stored online and available freely has reached unprecedented levels. It is estimated that in 2011, there were over 100 billion photographs stored in just one of the major social media sites. This number is growing exponentially. Moreover, advances in the fields of Photogrammetry and Computer Vision have led to significant breakthroughs such as the Structure from Motion algorithm which creates 3D models of objects using their twodimensional photographs. The existence of powerful and affordable computational machinery not only the reconstruction of complex structures but also entire cities. This paper illustrates an overview of our methodology for producing 3D models of Cultural Heritage structures such as monuments and artefacts from 2D data (pictures, video), available on Internet repositories, social media, Google Maps, Bing, etc. We also present new approaches to semantic enrichment of the end results and their subsequent export to Europeana, the European digital library, for integrated, interactive 3D visualisation within regular web browsers using WebGl and X3D. Our main goal is to enable historians, architects, archaeologists, urban planners and affiliated professionals to reconstruct views of historical structures from millions of images floating around the web and interact with them

    4D reconstruction of the past

    No full text
    Proceedings of SPIE - The International Society for Optical Engineering Volume 8795, 2013, Article number 87950JOne of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Search engines can search text for keywords using algorithms of varied intelligence and with limited success. Searching images is a much more complex and computationally intensive task but some initial steps have already been made in this direction, mainly in face recognition. This paper aims to describe our proposed pipeline for integrating data available on Internet repositories and social media, such as photographs, animation and text to produce 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EUROPEANA. Our main goal is to enable historians, architects, archaeologists, urban planners and a liated professionals to reconstruct views of historical monuments from thousands of images oating around the web.European Space Agency (ESA),Intergraph (SG and I) Italia LLC, part of Hexagon,Geosystems Hellas,Frederick University,Neapolis Universit
    corecore