133 research outputs found

    Evaluating Food Policy Councils Using Structural Equation Modeling

    Get PDF
    At least 282 Food Policy Councils (FPCs) are currently working to improve access to healthy foods in their communities by connecting food system sectors, gathering community input, and advising food policy. Empirical research on FPCs is limited. This study empirically evaluates FPCs to better understand the relationships between Organizational Capacity, Social Capital, and Council Effectiveness by testing a FPC Framework adapted from Allen and colleagues (2012). Members of all FPCs in the U.S., Canada, and Native American Tribes and First Nations were invited to complete the Food Policy Council Self-Assessment Tool (FPC-SAT). Structural equation modeling was used to test the FPC Framework. Three hundred and fifty-four FPC members from 95 councils completed the FPC-SAT. After slight modification, a revised FPC Framework was a good fit with the data (χ2 = 40.085, df = 24, p-value =.021, comparative fit index = 0.988, Tucker Lewis index = 0.982, root mean squared error of approximation = 0.044, p-close =.650). A moderation analysis revealed that community context influences the relationship between Social Capital and Council Effectiveness within the FPC Framework. The FPC Framework can guide capacity building interventions and FPC evaluations. The empirically tested framework can help FPCs efficiently work toward achieving their missions and improving their local food system

    Collective dynamics of internal states in a Bose gas

    Get PDF
    Theory for the Rabi and internal Josephson effects in an interacting Bose gas in the cold collision regime is presented. By using microscopic transport equation for the density matrix the problem is mapped onto a problem of precession of two coupled classical spins. In the absence of an external excitation field our results agree with the theory for the density induced frequency shifts in atomic clocks. In the presence of the external field, the internal Josephson effect takes place in a condensed Bose gas as well as in a non-condensed gas. The crossover from Rabi oscillations to the Josephson oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure

    Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps

    Get PDF
    We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering amplitude for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single channel s-wave scattering of 23^{23}Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime. Our model works also for multi-channel scattering, where the scattering length can be made large due to a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review

    Representations of Conformal Nets, Universal C*-Algebras and K-Theory

    Full text link
    We study the representation theory of a conformal net A on the circle from a K-theoretical point of view using its universal C*-algebra C*(A). We prove that if A satisfies the split property then, for every representation \pi of A with finite statistical dimension, \pi(C*(A)) is weakly closed and hence a finite direct sum of type I_\infty factors. We define the more manageable locally normal universal C*-algebra C*_ln(A) as the quotient of C*(A) by its largest ideal vanishing in all locally normal representations and we investigate its structure. In particular, if A is completely rational with n sectors, then C*_ln(A) is a direct sum of n type I_\infty factors. Its ideal K_A of compact operators has nontrivial K-theory, and we prove that the DHR endomorphisms of C*(A) with finite statistical dimension act on K_A, giving rise to an action of the fusion semiring of DHR sectors on K_0(K_A)$. Moreover, we show that this action corresponds to the regular representation of the associated fusion algebra.Comment: v2: we added some comments in the introduction and new references. v3: new authors' addresses, minor corrections. To appear in Commun. Math. Phys. v4: minor corrections, updated reference

    Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps

    Full text link
    We describe a model for s-wave collisions between ground state atoms in optical lattices, considering especially the limits of quasi-one and two dimensional axisymmetric harmonic confinement. When the atomic interactions are modelled by an s-wave Fermi-pseudopotential, the relative motion energy eigenvalues can easily be obtained. The results show that except for a bound state, the trap eigenvalues are consistent with one- and two- dimensional scattering with renormalized scattering amplitudes. For absolute scattering lengths large compared with the tightest trap width, our model predicts a novel bound state of low energy and nearly-isotropic wavefunction extending on the order of the tightest trap width.Comment: 9 pages, 8 figures; submitted to Phys. Rev.

    Single Atom Cooling by Superfluid Immersion: A Non-Destructive Method for Qubits

    Full text link
    We present a scheme to cool the motional state of neutral atoms confined in sites of an optical lattice by immersing the system in a superfluid. The motion of the atoms is damped by the generation of excitations in the superfluid, and under appropriate conditions the internal state of the atom remains unchanged. This scheme can thus be used to cool atoms used to encode a series of entangled qubits non-destructively. Within realisable parameter ranges, the rate of cooling to the ground state is found to be sufficiently large to be useful in experiments.Comment: 14 pages, 9 figures, RevTeX

    Dark soliton states of Bose-Einstein condensates in anisotropic traps

    Full text link
    Dark soliton states of Bose-Einstein condensates in harmonic traps are studied both analytically and computationally by the direct solution of the Gross-Pitaevskii equation in three dimensions. The ground and self-consistent excited states are found numerically by relaxation in imaginary time. The energy of a stationary soliton in a harmonic trap is shown to be independent of density and geometry for large numbers of atoms. Large amplitude field modulation at a frequency resonant with the energy of a dark soliton is found to give rise to a state with multiple vortices. The Bogoliubov excitation spectrum of the soliton state contains complex frequencies, which disappear for sufficiently small numbers of atoms or large transverse confinement. The relationship between these complex modes and the snake instability is investigated numerically by propagation in real time.Comment: 11 pages, 8 embedded figures (two in color

    A selective ATP-binding cassette subfamily G member 2 efflux inhibitor revealed via high-throughput flow cytometry

    Get PDF
    Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented
    • 

    corecore