1,943 research outputs found
Optimal branching asymmetry of hydrodynamic pulsatile trees
Most of the studies on optimal transport are done for steady state regime
conditions. Yet, there exists numerous examples in living systems where supply
tree networks have to deliver products in a limited time due to the pulsatile
character of the flow. This is the case for mammals respiration for which air
has to reach the gas exchange units before the start of expiration. We report
here that introducing a systematic branching asymmetry allows to reduce the
average delivery time of the products. It simultaneously increases its
robustness against the unevitable variability of sizes related to
morphogenesis. We then apply this approach to the human tracheobronchial tree.
We show that in this case all extremities are supplied with fresh air, provided
that the asymmetry is smaller than a critical threshold which happens to fit
with the asymmetry measured in the human lung. This could indicate that the
structure is adjusted at the maximum asymmetry level that allows to feed all
terminal units with fresh air.Comment: 4 pages, 4 figure
Safety Considerations for Operation of Unmanned Aerial Vehicles in the National Airspace System
There is currently a broad effort underway in the United States and internationally by several organizations to craft regulations enabling the safe operation of UAVs in the NAS. Current federal regulations governing unmanned aircraft are limited in scope, and the lack of regulations is a barrier to achieving the full potential benefit of UAV operations. To inform future FAA regulations, an investigation of the safety considerations for UAV operation in the NAS was performed. Key issues relevant to operations in the NAS, including performance and operating architecture were examined, as well as current rules and regulations governing unmanned aircraft. In integrating UAV operations in the NAS, it will be important to consider the implications of different levels of vehicle control and autonomous capability and the source of traffic surveillance in the system.
A system safety analysis was performed according to FAA system safety guidelines for two critical hazards in UAV operation: midair collision and ground impact. Event-based models were developed describing the likelihood of ground fatalities and midair collisions under several assumptions. From the models, a risk analysis was performed calculating the expected level of safety for each hazard without mitigation. The variation of expected level of safety was determined based on vehicle characteristics and population density for the ground impact hazard, and traffic density for midair collisions.
The results of the safety analysis indicate that it may be possible to operate small UAVs with few operational and size restrictions over the majority of the United States. As UAV mass increases, mitigation measures must be utilized to further reduce both ground impact and midair collision risks to target levels from FAA guidance. It is in the public interest to achieve the full benefits of UAV operations, while still preserving safety through effective mitigation of risks with the least possible restrictions. Therefore, a framework was presented under which several potential mitigation measures were introduced and could be evaluated. It is likely that UAVs will be significant users of the future NAS, and this report provides an analytical basis for evaluating future regulatory decisions
Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR
We demonstrate a minimally invasive nuclear magnetic resonance (NMR)
technique that enables determination of the surface-area-to-volume ratio (S/V)
of soft porous materials from measurements of the diffusive exchange of
laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the
solid phase. We apply this NMR technique to porous polymer samples and find
approximate agreement with destructive stereological measurements of S/V
obtained with optical confocal microscopy. Potential applications of
laser-polarized xenon interphase exchange NMR include measurements of in vivo
lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure
Particle Energization in an Expanding Magnetized Relativistic Plasma
Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the
relativistic expansion of a magnetized collisionless plasma into a vacuum, we
report a new mechanism in which the magnetic energy is efficiently converted
into the directed kinetic energy of a small fraction of surface particles. We
study this mechanism for both electron-positron and electron-ion (mi/me=100, me
is the electron rest mass) plasmas. For the electron-positron case the pairs
can be accelerated to ultra-relativistic energies. For electron-ion plasmas
most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical
Review Letter
Parton energy loss due to synchrotron-like gluon emission
We develop a quasiclassical theory of the synchrotron-like gluon radiation.
Our calculations show that the parton energy loss due to the synchrotron gluon
emission may be important in the jet quenching phenomenon if the plasma
instabilities generate a sufficiently strong chromomagnetic field. Our gluon
spectrum disagrees with that obtained by Shuryak and Zahed within the
Schwinger's proper time method.Comment: 11 pages, 3 eps figure
Can greater muscularity in larger individuals resolve the 3/4 power-law controversy when modelling maximum oxygen uptake?
BACKGROUND: The power function relationship, MR = a.m(b), between metabolic rate (MR) and body mass m has been the source of much controversy amongst biologists for many years. Various studies have reported mass exponents (b) greater than the anticipated 'surface-area' exponent 0.67, often closer to 0.75 originally identified by Kleiber. AIM: The study aimed to provide a biological explanation for these 'inflated' exponents when modelling maximum oxygen uptake (max), based on the observations from this and previous studies that larger individuals develop disproportionately more muscle mass in the arms and legs. RESEARCH DESIGN AND SUBJECTS: A cross-sectional study of 119 professional soccer players from Croatia aged 18-34 was carried out. RESULTS: Here we confirm that the power function relationship between max and body mass of the professional soccer players results in an 'inflated' mass exponent of 0.75 (95% confidence interval from 0.56 to 0.93), but also the larger soccer players have disproportionately greater leg muscle girths. When the analysis was repeated incorporating the calf and thigh muscle girths rather than body mass as predictor variables, the analysis not only explained significantly more of the variance in max, but the sum of the exponents confirmed a surface-area law. CONCLUSIONS: These findings confirm the pitfalls of fitting body-mass power laws and suggest using muscle-girth methodology as a more appropriate way to scale or normalize metabolic variables such as max for individuals of different body sizes
Mealtime : A circadian disruptor and determinant of energy balance?
Open Access via the Jisc Wiley Agreement Medical Research Council Grant Number(s): MR/P012205/1 Rural and Environment Science and Analytical Services DivisionPeer reviewedPublisher PD
- …