76,235 research outputs found

    On the Disappearance of Kilohertz Quasi-Periodic Oscillations at a High Mass Accretion Rate in Low-Mass X-ray Binaries

    Full text link
    For all sources in which the phenomenon of kilo-Hertz quasi-periodic oscillation (kHz QPO) is observed, the QPOs disappear abruptly when the inferred mass accretion rate exceeds a certain threshold. Although the threshold cannot at present be accurately determined (or even quantified) observationally, it is clearly higher for bright Z sources than for faint atoll sources. Here we propose that the observational manifestation of kHz QPOs {\em requires} direct interaction between the neutron star magnetosphere and the Keplerian accretion disk and that the cessation of kHz QPOs at high accretion rate is due to the lack of such an interact when the Keplerian disk terminates at the last stable orbit and yet the magnetosphere is pushed farther inward. The threshold is therefore dependent of the magnetic field strength -- the stronger the magnetic field the higher the threshold. This is certainly in agreement with the atoll/Z paradigm, but we argue that it is also generally true, even for individual sources within each (atoll or Z) category. For atoll sources, the kHz QPOs also seem to vanish at low accretion rate. Perhaps the ``disengagement'' between the magnetosphere and the Keplerian disk also takes place under such circumstances, because of, for instance, the presence of quasi-spherical advection-dominated accretion flow (ADAF) close to the neutron star. Unfortunately, in this case, the estimation of the accretion rate threshold would require a knowledge of the physical mechanisms that cause the disengagement. If the ADAF is responsible, the threshold is likely dependent of the magnetic field of the neutron star.Comment: Minor revisions to match the published versio

    Counting integral points in certain homogeneous spaces

    No full text
    a

    Optimal design application on the advanced aeroelastic rotor blade

    Get PDF
    The vibration and performance optimization procedure using regression analysis was successfully applied to an advanced aeroelastic blade design study. The major advantage of this regression technique is that multiple optimizations can be performed to evaluate the effects of various objective functions and constraint functions. The data bases obtained from the rotorcraft flight simulation program C81 and Myklestad mode shape program are analytically determined as a function of each design variable. This approach has been verified for various blade radial ballast weight locations and blade planforms. This method can also be utilized to ascertain the effect of a particular cost function which is composed of several objective functions with different weighting factors for various mission requirements without any additional effort

    Quantum phase estimation algorithms with delays: effects of dynamical phases

    Full text link
    The unavoidable finite time intervals between the sequential operations needed for performing practical quantum computing can degrade the performance of quantum computers. During these delays, unwanted relative dynamical phases are produced due to the free evolution of the superposition wave-function of the qubits. In general, these coherent "errors" modify the desired quantum interferences and thus spoil the correct results, compared to the ideal standard quantum computing that does not consider the effects of delays between successive unitary operations. Here, we show that, in the framework of the quantum phase estimation algorithm, these coherent phase "errors", produced by the time delays between sequential operations, can be avoided by setting up the delay times to satisfy certain matching conditions.Comment: 10 pages, no figur
    corecore