3 research outputs found

    On the fine structure of the quiet solar \Ca II K atmosphere

    Get PDF
    We investigate the morphological, dynamical, and evolutionary properties of the internetwork and network fine structure of the quiet sun at disk centre. The analysis is based on a ∼\sim6 h time sequence of narrow-band filtergrams centred on the inner-wing \Ca II K2v_{\rm 2v} reversal at 393.3 nm. The results for the internetwork are related to predictions derived from numerical simulations of the quiet sun. The average evolutionary time scale of the internetwork in our observations is 52 sec. Internetwork grains show a tendency to appear on a mesh-like pattern with a mean cell size of ∼\sim4-5 arcsec. Based on this size and the spatial organisation of the mesh we speculate that this pattern is related to the existence of photospheric downdrafts as predicted by convection simulations. The image segmentation shows that typical sizes of both network and internetwork grains are in the order of 1.6 arcs.Comment: 8 pages, 9 figure

    Lower solar atmosphere and magnetism at ultra-high spatial resolution

    Get PDF
    We present the scientific case for a future space-based telescope aimed at very high spatial and temporal resolution imaging of the solar photosphere and chromosphere. Previous missions (e.g., HINODE, SUNRISE) have demonstrated the power of observing the solar photosphere and chromosphere at high spatial resolution without contamination from Earth's atmosphere. We argue here that increased spatial resolution (from currently 70 km to 25 km in the future) and high temporal cadence of the observations will vastly improve our understanding of the physical processes controlling solar magnetism and its characteristic scales. This is particularly important as the Sun's magnetic field drives solar activity and can significantly influence the Sun-Earth system. At the same time a better knowledge of solar magnetism can greatly improve our understanding of other astrophysical objects
    corecore