3,205 research outputs found

    Mammalian cells in culture actively export specific microRNAs

    Get PDF
    The discovery of microRNAs (miRNAs) as a new class of regulators of gene expression has triggered an explosion of research, but has left many unanswered questions about how this regulation works and how it is integrated with other regulatory mechanisms. A number of miRNAs have been found to be present in blood plasma and other body fluids of humans and mice in surprisingly high concentrations. This observation was unexpected in two respects: first, the fact that these molecules are present at all outside the cell at significant concentrations; and second, that these molecules appear to be stable outside of the cell. In light of this it has been suggested that the biological function of miRNAs may also extend outside of the cell and mediate cell-cell communication^[1-5]^. Such a system would be expected to export specific miRNAs from cells in response to specific biological stimuli. We report here that after serum deprivation several human cell lines tested do export a spectrum of miRNAs into the culture medium. The export response is substantial and prompt. The exported miRNAs are found both within and outside of microvesicles and exosomes. We have identified some candidate protein components of this system outside the cell, and found one exported protein that plays a role in protecting miRNA from degradation. Our results point to a hitherto unrecognized and uncharacterized miRNA trafficking system in mammalian cells that may involve cell-cell communication

    Lead-Free Wrought Copper Alloys for Bushings and Sliding Elements

    Get PDF

    Online Calibration of the TPC Drift Time in the ALICE High Level Trigger

    Full text link
    ALICE (A Large Ion Collider Experiment) is one of four major experiments at the Large Hadron Collider (LHC) at CERN. The High Level Trigger (HLT) is a compute cluster, which reconstructs collisions as recorded by the ALICE detector in real-time. It employs a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs subdetectors sensitive to environmental conditions such as pressure and temperature, e.g. the Time Projection Chamber (TPC). A precise reconstruction of particle trajectories requires the calibration of these detectors. Performing the calibration in real time in the HLT improves the online reconstructions and renders certain offline calibration steps obsolete speeding up offline physics analysis. For LHC Run 3, starting in 2020 when data reduction will rely on reconstructed data, online calibration becomes a necessity. Reconstructed particle trajectories build the basis for the calibration making a fast online-tracking mandatory. The main detectors used for this purpose are the TPC and ITS (Inner Tracking System). Reconstructing the trajectories in the TPC is the most compute-intense step. We present several improvements to the ALICE High Level Trigger developed to facilitate online calibration. The main new development for online calibration is a wrapper that can run ALICE offline analysis and calibration tasks inside the HLT. On top of that, we have added asynchronous processing capabilities to support long-running calibration tasks in the HLT framework, which runs event-synchronously otherwise. In order to improve the resiliency, an isolated process performs the asynchronous operations such that even a fatal error does not disturb data taking. We have complemented the original loop-free HLT chain with ZeroMQ data-transfer components. [...]Comment: 8 pages, 10 figures, proceedings to 2016 IEEE-NPSS Real Time Conferenc

    Early Tube Feeding after Percutaneous Endoscopic Gastrostomy (PEG): An Observational Study.

    Get PDF
    This study investigated whether enteral nutrition by early tube feeding led to changes in clinical parameters compared to tube feeding after 24 h. Starting on 1 January 2021, and following the latest update of the ESPEN guidelines on enteral nutrition, patients with percutaneous endoscopic gastrostomy (PEG) received tube feeding 4 h after tube insertion. An observational study was conducted to analyze whether the new scheme affected patient complaints, complications, or hospitalization duration compared to the previous procedure of tube feeding starting after 24 h. Clinical patient records from one year before and one year after the introduction of the new scheme were examined. A total of 98 patients were included, and of those 47 received tube feeding 24 h after tube insertion, and 51 received tube feeding 4 h after tube insertion. The new scheme did not influence the frequency or severity of patient complaints or complications related to tube feeding (all p-values > 0.05). However, the study showed that the length of stay in hospital was significantly shorter when following the new scheme (p = 0.030). In this observational cohort study an earlier start of tube feeding did not produce any negative consequences but did reduce the duration of hospitalization. Therefore, an early start, as suggested in the recent ESPEN guidelines, is supported and recommended

    CRISPy-web:An online resource to design sgRNAs for CRISPR applications

    Get PDF
    CRISPR/Cas9-based genome editing has been one of the major achievements of molecular biology, allowing the targeted engineering of a wide range of genomes. The system originally evolved in prokaryotes as an adaptive immune system against bacteriophage infections. It now sees widespread application in genome engineering workflows, especially using the Streptococcus pyogenes endonuclease Cas9. To utilize Cas9, so-called single guide RNAs (sgRNAs) need to be designed for each target gene. While there are many tools available to design sgRNAs for the popular model organisms, only few tools that allow designing sgRNAs for non-model organisms exist. Here, we present CRISPy-web (http://crispy.secondarymetabolites.org/), an easy to use web tool based on CRISPy to design sgRNAs for any user-provided microbial genome. CRISPy-web allows researchers to interactively select a region of their genome of interest to scan for possible sgRNAs. After checks for potential off-target matches, the resulting sgRNA sequences are displayed graphically and can be exported to text files. All steps and information are accessible from a web browser without the requirement to install and use command line scripts

    Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters

    Get PDF
    Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats such as rule-based BGC detection, sequence and annotation quality and cluster boundary prediction, which all have to be considered while planning for, performing and analyzing the results of genome mining studies

    Working memory signals in early visual cortex are present in weak and strong imagers

    Get PDF
    It has been suggested that visual images are memorized across brief periods of time by vividly imagining them as if they were still there. In line with this, the contents of both working memory and visual imagery are known to be encoded already in early visual cortex. If these signals in early visual areas were indeed to reflect a combined imagery and memory code, one would predict them to be weaker for individuals with reduced visual imagery vividness. Here, we systematically investigated this question in two groups of participants. Strong and weak imagers were asked to remember images across brief delay periods. We were able to reliably reconstruct the memorized stimuli from early visual cortex during the delay. Importantly, in contrast to the prediction, the quality of reconstruction was equally accurate for both strong and weak imagers. The decodable information also closely reflected behavioral precision in both groups, suggesting it could contribute to behavioral performance, even in the extreme case of completely aphantasic individuals. Our data thus suggest that working memory signals in early visual cortex can be present even in the (near) absence of phenomenal imagery.Bundesministerium fĂŒr Bildung und Forschung http://dx.doi.org/10.13039/501100002347Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Max‐Planck‐Gesellschaft http://dx.doi.org/10.13039/501100004189Peer Reviewe
    • 

    corecore