32 research outputs found

    On Individual, Sex and Age Differentiation of Indian House Crow (\u3cem\u3eCorvus splendens\u3c/em\u3e) Call: A Preliminary Study in Potohar, Pakistan

    Get PDF
    Considering importance of acoustics studies in population biology, 500 calls of the Indian House Crow (Corvus splendens) were recorded in morning - mid-afternoon hours (January-February, 2009) from 23 sites of urban areas of Potahar (Punjab, Pakistan). Calls were recorded using Sony CFS 1030 S sound records (sampling rate = 48 KHz) and edited using Sound Analysis Pro (Version 1.02). software using FFT method rate 50%, data window 9.27 ms, advanced window 1.36 ms. Through editing of calls, we selected 60 (37 ♂♂, 17 ♀♀, 6 Juvenile ♂♂) good quality spectrograms for detailed analysis. Spectrograms were characterized by rapid frequency modulations using 6 (call pitch, mean pitch goodness, mean frequency of the calls, frequency of modulations, mean amplitude modulation, mean wiener entropy) acoustic parameters. Significance of difference was analysed using Multivariate and Discriminate Function Analysis. Calls could be assigned to correct individual in 10.8% males, 21.0% females, and 42.9% juveniles, which was significantly higher than percentage of correct classification per chance. Calls could be attributes to correct sex in 88.5% and to correct age group in 80.6% of cases

    Generation of two human NRF2 knockout iPSC clones using CRISPR/Cas9 editing

    No full text
    The nuclear factor erythroid 2-related factor 2 (NFE2L2, known as NRF2) regulates the expression of antioxidative and anti-inflammatory proteins. In order to investigate its impact during viral infections and testing of antiviral compounds, we applied CRISPR/Cas9 editing to eliminate NRF2 in the human iPS cell line MHHi001-A and generated two NRF2 knockout iPSC clones MHHi001-A-6 and MHHi001-A-7. After differentiation into epithelia or endothelial cells, these cells are useful tools to examine the antiviral effects of activators of the NRF2 signaling pathway

    Estimation of heat transfer coefficient and friction factor with showering of aluminum nitride and alumina water based hybrid nanofluid in a tube with twisted tape insert

    No full text
    Abstract Twisted tape is one of the active thermal proficiency boosting technology which has been deeply examined because to consistent efficiency findings and easy implementations. Thermo-hydraulic effectiveness of tubes fitted with twisted tapes is becoming highly significant. Although twisted tapes can cause swirls and disturb boundary layers, this is the most widely used method for improving convection. In the present attempt, to enhance the heat transfer twisted tape is inserted in tube. In the current modern research, the effect of twisted tape, on the enhancement of thermal transport, Nusselt number and friction factor performance of AIN–Al2O3/water hybrid nanofluid is evaluating utilizing CFD and ANSYS-FLUENT software. the consequence of twisted pitch 44 mm, 66 mm, 88 mm, 100 mm and Reynolds numbers 800, 1200, 1600 and 2000 on Nusselt number, heat transfer coefficient and friction coefficient have been computed numerically with 0.01 to 0.04 volume friction of nanopowders. The commercial ANSYS-FLUENT code was used in this analysis utilizing the SIMPLE method for pressure–velocity coupling. The KωK - \omega K - ω model and Navier Stokes equations are integrating utilizing finite volume method in ANSYS-FLUENT. It was observed that inserting the twisted tape in tube significantly improves the thermal conductivity as well as friction factor compared with the simple tube without turbulator

    Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions

    No full text
    Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4–7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8–18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia

    Elevated phospholipids and acylcarnitines C4 and C5 in cerebrospinal fluid distinguish viral CNS infections from autoimmune neuroinflammation

    No full text
    Abstract Background Viral and autoimmune encephalitis may present with similar symptoms, but require different treatments. Thus, there is a need for biomarkers to improve diagnosis and understanding of pathogenesis. We hypothesized that virus-host cell interactions lead to different changes in central nervous system (CNS) metabolism than autoimmune processes and searched for metabolite biomarkers in cerebrospinal fluid (CSF) to distinguish between the two conditions. Methods We applied a targeted metabolomic/lipidomic analysis to CSF samples from patients with viral CNS infections (n = 34; due to herpes simplex virus [n = 9], varicella zoster virus [n = 15], enteroviruses [n = 10]), autoimmune neuroinflammation (n = 25; autoimmune anti-NMDA-receptor encephalitis [n = 8], multiple sclerosis [n = 17), and non-inflamed controls (n = 31; Gilles de la Tourette syndrome [n = 20], Bell’s palsy with normal CSF cell count [n = 11]). 85 metabolites passed quality screening and were evaluated as biomarkers. Standard diagnostic CSF parameters were assessed for comparison. Results Of the standard CSF parameters, the best biomarkers were: CSF cell count for viral infections vs. controls (area under the ROC curve, AUC = 0.93), Q-albumin for viral infections vs. autoimmune neuroinflammation (AUC = 0.86), and IgG index for autoimmune neuroinflammation vs. controls (AUC = 0.90). Concentrations of 2 metabolites differed significantly (p < 0.05) between autoimmune neuroinflammation and controls, with proline being the best biomarker (AUC = 0.77). In contrast, concentrations of 67 metabolites were significantly higher in viral infections than controls, with SM.C16.0 being the best biomarker (AUC = 0.94). Concentrations of 68 metabolites were significantly higher in viral infections than in autoimmune neuroinflammation, and the 10 most accurate metabolite biomarkers (AUC = 0.89–0.93) were substantially better than Q-albumin (AUC = 0.86). These biomarkers comprised six phosphatidylcholines (AUC = 0.89–0.92), two sphingomyelins (AUC = 0.89, 0.91), and acylcarnitines isobutyrylcarnitine (C4, AUC = 0.92) and isovalerylcarnitine (C5, AUC = 0.93). Elevated C4 and C5 concentrations suggested dysfunctional mitochondrial β-oxidation and correlated only moderately with CSF cell count (Spearman ρ = 0.41 and 0.44), indicating that their increase is not primarily driven by inflammation. Conclusions Changes in CNS metabolism differ substantially between viral CNS infections and autoimmune neuroinflammation and reveal CSF metabolites as pathophysiologically relevant diagnostic biomarkers for the differentiation between the two conditions. In viral CNS infections, the observed higher concentrations of free phospholipids are consistent with disruption of host cell membranes, whereas the elevated short-chain acylcarnitines likely reflect compromised mitochondrial homeostasis and energy generation

    Functional profile and encapsulating properties of Colocasia esculenta (Taro)

    No full text
    Abstract Especially in tropical and subtropical countries, tuber and root crops have developed into important food crops. Due to its use in food preparation, aesthetics, and medicine, taro (Colocasia esculenta) is ranked as the fifth most important root crop. In comparison, it stores a considerable quantity of starch – even more than potatoes, sweet potatoes, cassava, and other similar crops. Colocasia leaves are lower in calories and high in dietary fiber minerals and proteins. The corms of Colocasia antiquorum contain anthocyanins such as pelargonidin‐3‐glucoside, cyanidin‐3‐glucoside, and cyanidin‐3‐chemnoside, which are reported to possess antifungal and antioxidative characteristics. The underground corms of taro (Colocasia esculenta), which contain 70%–80% starch, are the primary reason for its cultivation. Taro is a highly digestible root vegetable with a high content of mucilaginous gums and trivial starchy granules. It is used to make a variety of dishes. This review article highlights the functional properties, phytochemical profile, encapsulating properties, and various industrial applications. Its health advantages and dietary uses were also addressed

    Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry

    No full text
    Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways

    Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection.

    No full text
    Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. Itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection

    The compounds favor nuclear retention of p53 in IAV-infected A549 cells.

    No full text
    A549 cells were treated and infected as described for Fig 2. p53 was detected by indirect immunofluorescence 8 h p.i., using Alexa Fluor 568 labeled secondary antibody. A. Representative immunofluorescence images p53 = red. Nuclei = blue (DAPI). Pink signal in merged images = nuclear localized p53. The positive staining granular pattern is a technical artefact and was considered background signal. Negative control = no primary antibody. B. Fraction of all cells with nuclear p53 staining. Cells with nuclear p53 staining were counted by visual inspection by two independent examiners who were blinded to the identity of the specimens. n = 4 microscopic fields, means ±SEM. One-way ANOVA with Tukey’s post-hoc test, using infected untreated wild-type or knock-down cells as reference. * ≤0.05, ** ≤0.01, *** ≤0.001, **** ≤0.0001. (EPS)</p
    corecore