418 research outputs found

    Creating Simplified 3D Models with High Quality Textures

    Get PDF
    This paper presents an extension to the KinectFusion algorithm which allows creating simplified 3D models with high quality RGB textures. This is achieved through (i) creating model textures using images from an HD RGB camera that is calibrated with Kinect depth camera, (ii) using a modified scheme to update model textures in an asymmetrical colour volume that contains a higher number of voxels than that of the geometry volume, (iii) simplifying dense polygon mesh model using quadric-based mesh decimation algorithm, and (iv) creating and mapping 2D textures to every polygon in the output 3D model. The proposed method is implemented in real-time by means of GPU parallel processing. Visualization via ray casting of both geometry and colour volumes provides users with a real-time feedback of the currently scanned 3D model. Experimental results show that the proposed method is capable of keeping the model texture quality even for a heavily decimated model and that, when reconstructing small objects, photorealistic RGB textures can still be reconstructed.Comment: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Page 1 -

    Planogram Compliance Checking Based on Detection of Recurring Patterns

    Get PDF
    In this paper, a novel method for automatic planogram compliance checking in retail chains is proposed without requiring product template images for training. Product layout is extracted from an input image by means of unsupervised recurring pattern detection and matched via graph matching with the expected product layout specified by a planogram to measure the level of compliance. A divide and conquer strategy is employed to improve the speed. Specifically, the input image is divided into several regions based on the planogram. Recurring patterns are detected in each region respectively and then merged together to estimate the product layout. Experimental results on real data have verified the efficacy of the proposed method. Compared with a template-based method, higher accuracies are achieved by the proposed method over a wide range of products.Comment: Accepted by MM (IEEE Multimedia Magazine) 201

    Large-scale Continuous Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper addresses the problem of continuous gesture recognition from sequences of depth maps using convolutional neutral networks (ConvNets). The proposed method first segments individual gestures from a depth sequence based on quantity of movement (QOM). For each segmented gesture, an Improved Depth Motion Map (IDMM), which converts the depth sequence into one image, is constructed and fed to a ConvNet for recognition. The IDMM effectively encodes both spatial and temporal information and allows the fine-tuning with existing ConvNet models for classification without introducing millions of parameters to learn. The proposed method is evaluated on the Large-scale Continuous Gesture Recognition of the ChaLearn Looking at People (LAP) challenge 2016. It achieved the performance of 0.2655 (Mean Jaccard Index) and ranked 3rd3^{rd} place in this challenge

    RAODV: An Entropy-based Congestion Control for the AODV Routing Protocol

    Get PDF
    In networks, congestion causes packet loss and transmission delays. This paper presents a modified AODV routing protocol to detect and relieve congestion: R-AODV. We add an early congestion detection and avoidance mechanism to the route discovery process to achieve this purpose. In most previous congestion detection schemes, the affected node itself detects whether it is congested or not. The early detection and avoidance algorithm in this paper employs entropy estimation to determine the congestion status of a nodeā€™s neighbours and establish a less congested route by avoiding the congested nodes. Moreover, RAODV presents a multipath routing mechanism to support a backup route for the sender nodes. Finally, R-AODV provides a local replacement mechanism for route maintenance to improve the network performance

    Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI). These dynamic images are constructed from a sequence of depth maps using bidirectional rank pooling to effectively capture the spatial-temporal information. Such image-based representations enable us to fine-tune the existing ConvNets models trained on image data for classification of depth sequences, without introducing large parameters to learn. Upon the proposed representations, a convolutional Neural networks (ConvNets) based method is developed for gesture recognition and evaluated on the Large-scale Isolated Gesture Recognition at the ChaLearn Looking at People (LAP) challenge 2016. The method achieved 55.57\% classification accuracy and ranked 2nd2^{nd} place in this challenge but was very close to the best performance even though we only used depth data.Comment: arXiv admin note: text overlap with arXiv:1608.0633

    Pill Box for Adult Daily Taking Medicines

    Get PDF
    A large number of people in China suffer from chronic diseases and need to take medication for extended periods of time. To avoid taking medication repeatedly and incorrectly, pill boxes that have been designed to support correct usage are an essential need. This paper focuses on the user experience of pill boxes, using Normanā€™s three-level theoretical framework of Emotional Design as a guide. The design of my own innovative pill box and app was informed this framework as well as by an analysis of my own daily experience and behavior patterns of taking medicine, and comparisons with competing products in the market to extract design pain points and considerations. The pill box is designed in the shape of a bamboo tube and contains two parts, a timer and seven boxes, which are magnetically attached to each other. When the set time comes, the indicator and buzzer will be activated and the corresponding pill box will fall down, requiring the user to take the medicines and return it to its place. Users can manage medications, set reminders, change the status of the boxes and view medication taking records on the app. This uniquely design aims to balance utility and consistency with a playful sensibility and aesthetic to reduce stigma and encourage belonging

    FGO-ILNS: Tightly Coupled Multi-Sensor Integrated Navigation System Based on Factor Graph Optimization for Autonomous Underwater Vehicle

    Full text link
    Multi-sensor fusion is an effective way to enhance the positioning performance of autonomous underwater vehicles (AUVs). However, underwater multi-sensor fusion faces challenges such as heterogeneous frequency and dynamic availability of sensors. Traditional filter-based algorithms suffer from low accuracy and robustness when sensors become unavailable. The factor graph optimization (FGO) can enable multi-sensor plug-and-play despite data frequency. Therefore, we present an FGO-based strapdown inertial navigation system (SINS) and long baseline location (LBL) system tightly coupled navigation system (FGO-ILNS). Sensors such as Doppler velocity log (DVL), magnetic compass pilot (MCP), pressure sensor (PS), and global navigation satellite system (GNSS) can be tightly coupled with FGO-ILNS to satisfy different navigation scenarios. In this system, we propose a floating LBL slant range difference factor model tightly coupled with IMU preintegration factor to achieve unification of global position above and below water. Furthermore, to address the issue of sensor measurements not being synchronized with the LBL during fusion, we employ forward-backward IMU preintegration to construct sensor factors such as GNSS and DVL. Moreover, we utilize the marginalization method to reduce the computational load of factor graph optimization. Simulation and public KAIST dataset experiments have verified that, compared to filter-based algorithms like the extended Kalman filter and federal Kalman filter, as well as the state-of-the-art optimization-based algorithm ORB-SLAM3, our proposed FGO-ILNS leads in accuracy and robustness

    Image feature recognition and gas permeability prediction of Gaomiaozi bentonite based on digital images and machine learning

    Get PDF
    Gas permeability, which is measured mainly through gas permeability experiments, is a critical technical index in many engineering ļ¬elds. In this study, permeability is ļ¬rstly calculated based on information from a digital image and an improved permeability prediction model. The calculated results are experimentally veriļ¬ed. Subsequently, a self-developed image-processing program is used to extract feature parameters from a scanning electron microscopy image. Meanwhile, an extreme learning machine algorithm is used to input the image feature parameters obtained using the image-processing program into the extreme learning machine algorithm for machine learning. Additionally, we compare several typically used machine learning algorithms, which conļ¬rmed the reliability and accuracy of our algorithm. The best activation function can be obtained by comparing the predicted permeability using an appropriate number of neuron nodes. Experimental results show that the program can accurately identify the features of the microscopy image. Combining the program with an extreme learning machine neural network algorithmgas permeability results to be obtained with high accuracy. This method yields good predictions of permeability in certain cases and has been adapted to other geomaterials.Cited as:Ā Liu, J., Ma, S., Shen, W., Zhou, J., Hong, Y. Image feature recognition and gas permeability prediction of Gaomiaozi bentonite based on digital images and machine learning. Advances in Geo-Energy Research, 2022, 6(4): 314-323. https://doi.org/10.46690/ager.2022.04.0

    SRoUDA: Meta Self-training for Robust Unsupervised Domain Adaptation

    Full text link
    As acquiring manual labels on data could be costly, unsupervised domain adaptation (UDA), which transfers knowledge learned from a rich-label dataset to the unlabeled target dataset, is gaining increasing popularity. While extensive studies have been devoted to improving the model accuracy on target domain, an important issue of model robustness is neglected. To make things worse, conventional adversarial training (AT) methods for improving model robustness are inapplicable under UDA scenario since they train models on adversarial examples that are generated by supervised loss function. In this paper, we present a new meta self-training pipeline, named SRoUDA, for improving adversarial robustness of UDA models. Based on self-training paradigm, SRoUDA starts with pre-training a source model by applying UDA baseline on source labeled data and taraget unlabeled data with a developed random masked augmentation (RMA), and then alternates between adversarial target model training on pseudo-labeled target data and finetuning source model by a meta step. While self-training allows the direct incorporation of AT in UDA, the meta step in SRoUDA further helps in mitigating error propagation from noisy pseudo labels. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SRoUDA where it achieves significant model robustness improvement without harming clean accuracy. Code is available at https://github.com/Vision.Comment: This paper has been accepted for presentation at the AAAI202
    • ā€¦
    corecore