104 research outputs found

    Dynamic Background Reconstruction via MAE for Infrared Small Target Detection

    Full text link
    Infrared small target detection (ISTD) under complex backgrounds is a difficult problem, for the differences between targets and backgrounds are not easy to distinguish. Background reconstruction is one of the methods to deal with this problem. This paper proposes an ISTD method based on background reconstruction called Dynamic Background Reconstruction (DBR). DBR consists of three modules: a dynamic shift window module (DSW), a background reconstruction module (BR), and a detection head (DH). BR takes advantage of Vision Transformers in reconstructing missing patches and adopts a grid masking strategy with a masking ratio of 50\% to reconstruct clean backgrounds without targets. To avoid dividing one target into two neighboring patches, resulting in reconstructing failure, DSW is performed before input embedding. DSW calculates offsets, according to which infrared images dynamically shift. To reduce False Positive (FP) cases caused by regarding reconstruction errors as targets, DH utilizes a structure of densely connected Transformer to further improve the detection performance. Experimental results show that DBR achieves the best F1-score on the two ISTD datasets, MFIRST (64.10\%) and SIRST (75.01\%)

    DRPN: Making CNN Dynamically Handle Scale Variation

    Full text link
    Based on our observations of infrared targets, serious scale variation along within sequence frames has high-frequently occurred. In this paper, we propose a dynamic re-parameterization network (DRPN) to deal with the scale variation and balance the detection precision between small targets and large targets in infrared datasets. DRPN adopts the multiple branches with different sizes of convolution kernels and the dynamic convolution strategy. Multiple branches with different sizes of convolution kernels have different sizes of receptive fields. Dynamic convolution strategy makes DRPN adaptively weight multiple branches. DRPN can dynamically adjust the receptive field according to the scale variation of the target. Besides, in order to maintain effective inference in the test phase, the multi-branch structure is further converted to a single-branch structure via the re-parameterization technique after training. Extensive experiments on FLIR, KAIST, and InfraPlane datasets demonstrate the effectiveness of our proposed DRPN. The experimental results show that detectors using the proposed DRPN as the basic structure rather than SKNet or TridentNet obtained the best performances

    Bionic Duplication of Fresh Navodon septentrionalis

    Get PDF
    Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS) elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B) model was performed to explain the relationship between structure and hydrophobicity

    Original Article Correlation of rs1799793 polymorphism in ERCC2 and the clinical response to platinum-based chemotherapy in patients with triple negative breast cancer

    Get PDF
    Abstract: Background: Polymorphisms of DNA repair genes may affect the repair capacity of DNA damages and cause different responses towards chemotherapy. Excision repair cross-complementing group 2 (ERCC2) plays an important role in the nucleotide excision repair. Objectives: The aim of this study was to investigate the association between ERCC2 single nucleotide polymorphisms (SNPs) and the response to platinum-based chemotherapy among patients with triple negative breast cancer. Methods: In total, 60 triple negative breast cancer patients treated with platinum-based chemotherapy were studied. The clinical, pathological and treatment data of them were collected. Sequenom's MassARRAY system was used in the detection of the SNPs of ERCC2. Finally, the association between genotypes and different clinical responses among patients was analyzed. All of the patients received a platinum-based chemotherapy for 4 cycles in median and achieved an overall response rate of 66.7%, showing a comparative good response towards platinum-based chemotherapy among triple negative breast cancer. Fifty-three of the 60 patients had got the results of ERCC2 rs1799793 polymorphisms after MassARRAY detection. Results: The proportion of GG genotype and GA genotype was 81.1% and 18.9% respectively. The response rate of the rs1799793 GG genotype group was 69.8%, while the GA genotype group only had a response rate of 30.0%. It turned out that the GG genotype was associated with better response towards platinum-based chemotherapy (P=0.030). Conclusions: ERCC2 rs1799793 polymorphism may be associated with the clinical sensitivity of platinum-based chemotherapy and could be a potential predictive biomarker for triple negative breast cancer patients treated with platinum compounds

    Dietary patterns and risk for gastric cancer: A case-control study in residents of the Huaihe River Basin, China

    Get PDF
    AimEvidence linking dietary patterns and the risk of gastric cancer was limited, especially in Chinese populations. This study aimed to explore the association between dietary patterns and the risk of gastric cancer in residents of the Huaihe River Basin, China.MethodsThe association between dietary patterns and the risk of gastric cancer was investigated through a case-control study. Dietary patterns were identified with factor analysis based on responses to a food frequency questionnaire (FFQ). Gastric cancer was diagnosed according to the International Classification of Diseases, 10th Revision (ICD 10). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated across the tertiles of dietary pattern scores using unconditional logistic regression models.ResultsA total of 2,468 participants were included in this study. Six main dietary patterns were extracted, and those patterns explained 57.09% of the total variation in food intake. After adjusting for demographic characteristics, lifestyle factors, individual disease history, family history of cancer and Helicobacter. Pylori (H. pylori) infection, comparing the highest with the lowest tertiles of dietary pattern scores, the multivariable ORs (95% CIs) were 0.786 (0.488, 1.265; Ptrend < 0.001) for the flavors, garlic and protein pattern, 2.133 (1.299, 3.502; Ptrend < 0.001) for the fast food pattern, 1.050 (0.682, 1.617; Ptrend < 0.001) for the vegetable and fruit pattern, 0.919 (0.659, 1.282; Ptrend < 0.001) for the pickled food, processed meat products and soy products pattern, 1.149 (0.804, 1.642; Ptrend < 0.001) for the non-staple food pattern and 0.690 (0.481, 0.989; Ptrend < 0.001) for the coffee and dairy pattern.ConclusionsThe specific dietary patterns were associated with the risk of gastric cancer. This study has implications for the prevention of gastric cancer

    Chemical Composition, Antimicrobial and Insecticidal Activities of Essential Oils of Discarded Perfume Lemon and Leaves (Citrus Limon (L.) Burm. F.) as Possible Sources of Functional Botanical Agents

    Get PDF
    Two essential oils were isolated from discarded perfume lemon and leaves (Citrus limon (L.) Burm. F.) by hydro-distillation with good yield (0.044% for perfume lemon and 0.338% for leaves). Their biological activities were evaluated against five selected bacterial strains and Aedes albopictus (Ae. albopictus, Diptera: Culicidae). Chemical composition indicated that both essential oils were rich in essential phytochemicals including hydrocarbons, monoterpenes and sesquiterpene. These constituents revealed some variability among the oils displaying interesting chemotypes (R)-(+)-limonene (12.29–49.63%), citronellal (5.37–78.70%) and citronellol (2.98–7.18%). The biological assessments proved that the two essential oils had similar effect against bacterial (inhibition zones diameter ranging from 7.27 ± 0.06 to 10.37 ± 0.15 mm; MICs and MBCs ranging from 1.6 to 6.4 mg/mL); against Ae. albopictus larvae (LC(50) ranging from 384.81 to 395.09 ppm) and adult mosquito (LD(50) ranging from 133.059 to 218.962 μg/cm(2)); the activity of the two chemotypes ((R)-(+)-limonene and citronellal): larvae (LC(50) ranging from 267.08 to 295.28 ppm), which were all presented in dose-dependent manners. Through this work, we have showcased that recycling and reusing of agriculture by-products, such as discarded perfume lemon and leaves can produce eco-friendly alternatives in bacterial disinfectants and mosquito control product

    Reversed-engineered human alveolar lung-on-a-chip model

    Get PDF
    Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung

    Morphological diversity of single neurons in molecularly defined cell types.

    Get PDF
    Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits

    The impact of withdrawing aquaculture facilities on metazooplankton communities in the lakes are connected to the Yangtze River, China.

    No full text
    The withdrawal of aquaculture facilities has an important impact on the aquatic ecosystem of the lakes connected to the Yangtze River. In order to elucidate the response mechanism of metazooplankton to the changes in water environment after the removal of aquaculture facilities, we collected metazooplankton samples and investigated the water environment in the Huayanghe Lakes from the summer of 2018 to the spring of 2019. Aquatic plants recovered quickly, and water eutrophication was relieved, especially in Lake Huangda, followed by Lake Bo. During our study, the highest regional (γ) diversity was 71 in summer, while the lowest was 32 in winter. Species turnover in space (β diversity) varied between 10.01 and 56.52, which was highest in summer. Based on redundancy analysis, environmental factors such as transparency, Chl α, water temperature and water depth, had greatly effects on the metazooplankton community structure. The results showed that the restoration of aquatic plants increased species diversity and metazooplankton density. This study provides a data basis for lakes restoration and a scientific basis for the management and protection of lakes water ecosystem
    • …
    corecore