105 research outputs found

    Evaluation of Processing Technology Reliability Based on Copula-SVM

    Get PDF
    AbstractThe inherent reliability of product was formed in design and manufacturing process, and the inherent reliability prediction model of the product is foundation of the manufacturing process control and process improvement. The method of processing technology reliability evaluation based on Copula-SVM is presented. Firstly, the principle of the inherent reliability during manufacturing process was analyzed. Secondly, the dependency structure of the process characteristic is given by means of the copula function. Finally, the inherent reliability prediction method based on support vector machine is presented, and the feasibility and practicability of the method were indicated by an industry application

    Automated Machine Learning for Deep Recommender Systems: A Survey

    Full text link
    Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences. They have unprecedented feature representations effectiveness and the capacity of modeling the non-linear relationships between users and items. Despite their advancements, DRS models, like other deep learning models, employ sophisticated neural network architectures and other vital components that are typically designed and tuned by human experts. This article will give a comprehensive summary of automated machine learning (AutoML) for developing DRS models. We first provide an overview of AutoML for DRS models and the related techniques. Then we discuss the state-of-the-art AutoML approaches that automate the feature selection, feature embeddings, feature interactions, and system design in DRS. Finally, we discuss appealing research directions and summarize the survey

    Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte.

    Get PDF
    Recent works into sulfide-type solid electrolyte materials have attracted much attention among the battery community. Specifically, the oxidative decomposition of phosphorus and sulfur based solid state electrolyte has been considered one of the main hurdles towards practical application. Here we demonstrate that this phenomenon can be leveraged when lithium thiophosphate is applied as an electrochemically "switched-on" functional redox mediator-generator for the activation of commercial bulk lithium sulfide at up to 70 wt.% lithium sulfide electrode content. X-ray adsorption near-edge spectroscopy coupled with electrochemical impedance spectroscopy and Raman indicate a catalytic effect of generated redox mediators on the first charge of lithium sulfide. In contrast to pre-solvated redox mediator species, this design decouples the lithium sulfide activation process from the constraints of low electrolyte content cell operation stemming from pre-solvated redox mediators. Reasonable performance is demonstrated at strict testing conditions

    Multi-Modal Aesthetic Assessment for MObile Gaming Image

    Full text link
    With the proliferation of various gaming technology, services, game styles, and platforms, multi-dimensional aesthetic assessment of the gaming contents is becoming more and more important for the gaming industry. Depending on the diverse needs of diversified game players, game designers, graphical developers, etc. in particular conditions, multi-modal aesthetic assessment is required to consider different aesthetic dimensions/perspectives. Since there are different underlying relationships between different aesthetic dimensions, e.g., between the `Colorfulness' and `Color Harmony', it could be advantageous to leverage effective information attached in multiple relevant dimensions. To this end, we solve this problem via multi-task learning. Our inclination is to seek and learn the correlations between different aesthetic relevant dimensions to further boost the generalization performance in predicting all the aesthetic dimensions. Therefore, the `bottleneck' of obtaining good predictions with limited labeled data for one individual dimension could be unplugged by harnessing complementary sources of other dimensions, i.e., augment the training data indirectly by sharing training information across dimensions. According to experimental results, the proposed model outperforms state-of-the-art aesthetic metrics significantly in predicting four gaming aesthetic dimensions.Comment: 5 page

    On a method to authenticate and verify digital streams, Journal of Telecommunications and Information Technology, 2002, nr 2

    Get PDF
    Recently, digital streams have become widely used to make audio, video, and other media available in real-time over the Internet. As with other transmission methods, the recipient needs to have a possibility to verify the source and authenticity of the received information. Several techniques have been proposed to deal with this issue. Most of them are vulnerable to packet losses or they introduce unacceptable computational and/or communication overheads. Some of the graph-based techniques provide immunity to burst losses of certain length. However, these techniques are not immune to the loss of packets containing signatures or occasional burst of lengths greater than the assumed one. In the paper, we propose a modification to one of the graph-based techniques that introduces immunity to the loss of packets containing signatures, without introducing any additional overheads

    Two complex orthogonal space-time codes for eight transmit antennas

    Get PDF
    Two new constructions of complex orthogonal space-time block codes of order 8 based on the theory of amicable orthogonal designs are presented and their performance compared with that of the standard code of order 8. These new codes are suitable for multi-modulation schemes where the performance can be sacrificed for a higher throughput

    MicroRNA-939 amplifies Staphylococcus aureus-induced matrix metalloproteinase expression in atopic dermatitis

    Get PDF
    BackgroundAtopic dermatitis (AD) is a common chronic inflammatory skin diseases that seriously affects life quality of the patients. Staphylococcus aureus (S. aureus) colonization on the skin plays an important role in the pathogenesis of AD; however, the mechanism of how it modulates skin immunity to exacerbate AD remains unclear. MicroRNAs are short non-coding RNAs that act as post-transcriptional regulators of genes. They are involved in the pathogenesis of various inflammatory skin diseases.MethodsIn this study, we established miRNA expression profiles for keratinocytes stimulated with heat-killed S. aureus (HKSA). The expression of miR-939 in atopic dermatitis patients was analyzed by fluorescence in situ hybridization (FISH). miR-939 mimic was transfected to human primary keratinocyte to investigate its impact on the expression of matrix metalloproteinase genes (MMPs) in vitro. Subsequently, miR-939, along with Polyplus transfection reagent, was administered to MC903-induced atopic dermatitis skin to assess its function in vivo.ResultsMiR-939 was highly upregulated in HKSA-stimulated keratinocytes and AD lesions. In vitro studies revealed that miR-939 increased the expression of matrix metalloproteinase genes, including MMP1, MMP3, and MMP9, as well as the cell adhesion molecule ICAM1 in human primary keratinocytes. In vivo studies indicated that miR-939 increased the expression of matrix metalloproteinases to promote the colonization of S. aureus and exacerbated S. aureus-induced AD-like skin inflammation.ConclusionsOur work reveals miR-939 is an important regulator of skin inflammation in AD that could be used as a potential therapeutic target for AD

    Structural Color 3D Printing By Shrinking Photonic Crystals

    Get PDF
    The rings, spots and stripes found on some butterflies, Pachyrhynchus weevils, and many chameleons are notable examples of natural organisms employing photonic crystals to produce colorful patterns. Despite advances in nanotechnology, we still lack the ability to print arbitrary colors and shapes in all three dimensions at this microscopic length scale. Commercial nanoscale 3D printers based on two-photon polymerization are incapable of patterning photonic crystal structures with the requisite ~300 nm lattice constant to achieve photonic stopbands/ bandgaps in the visible spectrum and generate colors. Here, we introduce a means to produce 3D-printed photonic crystals with a 5x reduction in lattice constants (periodicity as small as 280 nm), achieving sub-100-nm features with a full range of colors. The reliability of this process enables us to engineer the bandstructures of woodpile photonic crystals that match experiments, showing that observed colors can be attributed to either slow light modes or stopbands. With these lattice structures as 3D color volumetric elements (voxels), we printed 3D microscopic scale objects, including the first multi-color microscopic model of the Eiffel Tower measuring only 39-microns tall with a color pixel size of 1.45 microns. The technology to print 3D structures in color at the microscopic scale promises the direct patterning and integration of spectrally selective devices, such as photonic crystal-based color filters, onto free-form optical elements and curved surfaces
    corecore